Math, asked by prasukjain72, 11 months ago

if x-a is a factor of x^2+ px-q and x^2+rx -t .then prove that a= t-q/r-p​

Answers

Answered by Anonymous
36

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{\underline{\bf{\huge\mathcal{...Answer...}}}}

\underline{\large\mathcal\red{solution}}

(x-a )is a factor of( x²+ px-q )and (x²+rx -t )

so the remainder in both cases when dividing by (x-a) is same i.e, 0

now ....

a {}^{2}  + p(a) - q = a {}^{2}  + r(a) - t \\  =  > pa - ra = q - t \\  =  > a(p - r) = q - t \\  =  > a =  \frac{(q - t)}{(p - r)}  \\  =  > a =  \frac{(t - q)}{(r - p)}  \:  \: (proved)

\large\mathcal\red{hope\: this \: helps \:you......}

Answered by aarushikamble794
2

Step-by-step explanation:

MK GAMING OFFICIALS OP SUBSCRIBE

Attachments:
Similar questions