Math, asked by StrongGirl, 7 months ago

If +(x, a) mand X Ix, af na then the standard deviation of variate x.

Attachments:

Answers

Answered by shadowsabers03
6

Given,

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-a)=n\quad\quad\dots(1)

\displaystyle\longrightarrow\sum_{i=1}^nx_i-\sum_{i=1}^na=n

\displaystyle\longrightarrow\sum_{i=1}^nx_i-na=n

\displaystyle\longrightarrow\sum_{i=1}^nx_i=na+n

\displaystyle\longrightarrow\sum_{i=1}^nx_i=n(a+1)

\displaystyle\longrightarrow\dfrac{1}{n}\sum_{i=1}^nx_i=a+1

The LHS here is the mean of the n terms.

\displaystyle\longrightarrow\bar x=a+1

\displaystyle\longrightarrow a=\bar x-1

Then (1) becomes,

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x+1)=n

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)+\sum_{i=1}^n1=n

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)+n=n

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)=0

Given,

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-a)^2=na

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x+1)^2=na

\displaystyle\longrightarrow\sum_{i=1}^n((x_i-\bar x)+1)^2=na

\displaystyle\longrightarrow\sum_{i=1}^n[(x_i-\bar x)^2+2(x_i-\bar x)+1]=na

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)^2+2\sum_{i=1}^n(x_i-\bar x)+\sum_{i=1}^n1=na

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)^2+2\times0+n=na

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)^2+n=na

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)^2=na-n

\displaystyle\longrightarrow\sum_{i=1}^n(x_i-\bar x)^2=n(a-1)

\displaystyle\longrightarrow\dfrac{1}{n}\sum_{i=1}^n(x_i-\bar x)^2=a-1

\displaystyle\longrightarrow\underline{\underline{\sqrt{\dfrac{1}{n}\sum_{i=1}^n(x_i-\bar x)^2}=\sqrt{a-1}}}

This is the standard deviation of the variate.

Hence (2) is the answer.

Similar questions