If x = a sec A + b tan A and y = a tan A + b sec A, prove that x² - y² = a² - b².
Asap please.
Answers
Answered by
34
Solution :
Given :
• x = a•secA + b•tanA
• y = a•tanA + b•secA
To prove :
• x² - y² = a² - b²
Proof :
LHS
= x² - y²
= (x + y) × (x - y)
= [ (a•secA + b•tanA) + (a•tanA + b•secA) ]
× [ (a•secA + b•tanA) - (a•tanA + b•secA) ]
= [ a•secA + b•tanA + a•tanA + b•secA ]
× [ a•secA + b•tanA - a•tanA - b•secA ]
= [ a•(secA + tanA) + b•(secA + tanA) ]
× [ a•(secA - tanA) - b•(secA - tanA) ]
= (secA + tanA)(a + b) × (seA - tanA)(a - b)
= (a + b)(a - b) × (secA + tanA)(secA - tanA)
= (a² - b²) × (sec²A - tan²A)
= (a² - b²) × 1 { °•° sec²A - tan²A = 1 }
= a² - b²
= RHS
Hence proved .
Answered by
23
FORMULA TO BE IMPLEMENTED
GIVEN
TO PROVE
PROOF
Hence proved
Similar questions