Math, asked by Victinee, 8 months ago

If x = a sec A + b tan A and y = a tan A + b sec A, prove that x² - y² = a² - b².


Asap please. ​

Answers

Answered by AlluringNightingale
34

Solution :

Given :

• x = a•secA + b•tanA

• y = a•tanA + b•secA

To prove :

• x² - y² = a² - b²

Proof :

LHS

= x² - y²

= (x + y) × (x - y)

= [ (a•secA + b•tanA) + (a•tanA + b•secA) ]

× [ (a•secA + b•tanA) - (a•tanA + b•secA) ]

= [ a•secA + b•tanA + a•tanA + b•secA ]

× [ a•secA + b•tanA - a•tanA - b•secA ]

= [ a•(secA + tanA) + b•(secA + tanA) ]

× [ a•(secA - tanA) - b•(secA - tanA) ]

= (secA + tanA)(a + b) × (seA - tanA)(a - b)

= (a + b)(a - b) × (secA + tanA)(secA - tanA)

= (a² - b²) × (sec²A - tan²A)

= (a² - b²) × 1 { °° sec²A - tan²A = 1 }

= a² - b²

= RHS

Hence proved .

Answered by pulakmath007
23

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

  { \sec}^{2} A -  { \tan}^{2} A = 1

GIVEN

x = a \sec \: A + b \tan \: A \:  \: and \:  \: y = a \tan \: A \:   +  b \sec \: A

TO PROVE

 {x}^{2}  -  {y}^{2}  =  {a}^{2}  -  {b}^{2}

PROOF

 {x}^{2}  -  {y}^{2}

 =   {( a \sec \: A + b \tan \: A)}^{2} \:   -  {(a \tan \: A \:   +  b \sec \: A )}^{2}  \: \:

 =   ({a}^{2}  { \sec}^{2} A + 2ab \:  \sec A  \tan A \:  +  {b}^{2}   { \tan}^{2} A) -  ({a}^{2}  { \tan}^{2} A + 2ab \:  \sec A  \tan A \:  +  {b}^{2}   { \sec}^{2} A)

 =   {a}^{2}  { \sec}^{2} A + 2ab \:  \sec A  \tan A \:  +  {b}^{2}   { \tan}^{2} A -  {a}^{2}  { \tan}^{2} A  -  2ab \:  \sec A  \tan A \:   -   {b}^{2}   { \sec}^{2} A

 =   {a}^{2}  { \sec}^{2} A +  {b}^{2}   { \tan}^{2} A -  {a}^{2}  { \tan}^{2} A\:   -   {b}^{2}   { \sec}^{2} A

 =   {a}^{2}  { \sec}^{2} A -  {a}^{2}  { \tan}^{2} A\:    -   {b}^{2}   { \sec}^{2} A \: +  {b}^{2}   { \tan}^{2} A

 =   {a}^{2} ( { \sec}^{2} A -    { \tan}^{2} A\:)    -   {b}^{2} (  { \sec}^{2} A \:  -    { \tan}^{2} A)

 =   {a}^{2}  \times 1   -   {b}^{2}   \times 1

 =  {a}^{2}  -  {b}^{2}

Hence proved

Similar questions