If x = a sec θ and y = b tan θ, then b²x²− a²y² =
A. ab
B. a²− b²
C. a² + b²
D. a² b²
Answers
b²x²-a²x² = a²b²
•x = a secθ
•y = b tanθ
•x² = a² sec²θ
•y² = b² tan²θ
•b²x² = a²b² sec²θ
•a²y² = a²b² tan²θ
•b²x²-a²x² = a²b² sec²θ - a²b² tan²θ
= a²b² ( sec²θ - tan²θ)
•As, sec²θ = 1 + tan²θ
•sec²θ - tan²θ =1
•b²x²-a²x² = a²b² (1)
•b²x²-a²x² = a²b²
Option D: is the value of the expression
Explanation:
Given that and
We need to determine the value of the expression
Let us substitute the values and in the expression , we get,
Simplifying, we get,
Taking out the common terms, we have,
Since, we know the identity,
Thus, we have,
Simplifying, we get,
Thus, the value of the expression is
Therefore, Option D is the correct answer.
Learn more:
(1) If x = a sec θ and y = b tan θ, thenb²x²-a²y² =
(a)ab
(b)a² − b²
(c)a² + b²
(d)a² b²
brainly.in/question/11828258
(2) Prove the identity : (sec² θ -1) (cosec² θ -1) = 1
brainly.in/question/3779224