Math, asked by yuvrajjain874, 11 months ago

If x = a sec θ and y = b tan θ, then b²x²− a²y² =
A. ab
B. a²− b²
C. a² + b²
D. a² b²

Answers

Answered by AnkitaSahni
4

b²x²-a²x² = a²b²

•x = a secθ

•y = b tanθ

•x² = a² sec²θ

•y² = b² tan²θ

•b²x² = a²b² sec²θ

•a²y² = a²b² tan²θ

•b²x²-a²x² = a²b² sec²θ - a²b² tan²θ

= a²b² ( sec²θ - tan²θ)

•As, sec²θ = 1 + tan²θ

•sec²θ - tan²θ =1

•b²x²-a²x² = a²b² (1)

•b²x²-a²x² = a²b²

Answered by adventureisland
1

Option D: a^{2} b^{2} is the value of the expression b^{2} x^{2}-a^{2} y^{2}

Explanation:

Given that x=a \sec \theta and y=b \tan \theta

We need to determine the value of the expression b^{2} x^{2}-a^{2} y^{2}

Let us substitute the values x=a \sec \theta and y=b \tan \theta in the expression b^{2} x^{2}-a^{2} y^{2}, we get,

b^{2} x^{2}-a^{2} y^{2}=b^2(a \ sec\  \theta)^2-a^2({b} \tan \theta)^2

Simplifying, we get,

b^{2} x^{2}-a^{2} y^{2}=b^2a^2 \ sec^2\  \theta-a^2{b^2} \tan^2 \theta

Taking out the common terms, we have,

b^{2} x^{2}-a^{2} y^{2}=a^2 b^2(\ sec^2\  \theta-\tan^2 \theta)

Since, we know the identity, 1+\tan ^{2} \theta=\sec ^{2} \theta

Thus, we have,

b^{2} x^{2}-a^{2} y^{2}=a^2 b^2(1)

Simplifying, we get,

b^{2} x^{2}-a^{2} y^{2}=a^2 b^2

Thus, the value of the expression is a^{2} b^{2}

Therefore, Option D is the correct answer.

Learn more:

(1) If x = a sec θ and y = b tan θ, thenb²x²-a²y² =

(a)ab

(b)a² − b²

(c)a² + b²

(d)a² b²

brainly.in/question/11828258

(2) Prove the identity : (sec² θ -1) (cosec² θ -1) = 1

brainly.in/question/3779224

Similar questions