If x = a sec Φ and y = b tan Φ, then find the value of b²x²-a²y².
Answers
Answered by
0
Answer:
x=asecphi
x^2=a^2(secphi)^2
y=btanphi
y^2=b^2(tanphi)^2
b^2x^2-a^2y^2
=b^2*a^2(secphi)^2-(a^2b^2(tanphi)^2)
=a^2*b^2((secphi) ^2-((tanphi) ^2)
=a^2*b^2*1
=a^2b^2
=(ab) ^2 ans..
Answered by
2
Answer:
Step-by-step explanation:
x=asecphi
x^2=a^2(secphi)^2
y=btanphi
y^2=b^2(tanphi)^2
b^2x^2-a^2y^2
=b^2*a^2(secphi)^2-(a^2b^2(tanphi)^2)
=a^2*b^2((secphi) ^2-((tanphi) ^2)
=a^2*b^2*1
=a^2b^2
=(ab) ^2 ans..
Similar questions