Math, asked by Anonymous, 8 months ago

If x = a sec Φ and y = b tan Φ, then find the value of b²x²-a²y².​

Answers

Answered by faisalraisinsm
0

Answer:

x=asecphi

x^2=a^2(secphi)^2

y=btanphi

y^2=b^2(tanphi)^2

b^2x^2-a^2y^2

=b^2*a^2(secphi)^2-(a^2b^2(tanphi)^2)

=a^2*b^2((secphi) ^2-((tanphi) ^2)

=a^2*b^2*1

=a^2b^2

=(ab) ^2 ans..

Answered by HarshChaudhary0706
2

Answer:

Step-by-step explanation:

x=asecphi

x^2=a^2(secphi)^2

y=btanphi

y^2=b^2(tanphi)^2

b^2x^2-a^2y^2

=b^2*a^2(secphi)^2-(a^2b^2(tanphi)^2)

=a^2*b^2((secphi) ^2-((tanphi) ^2)

=a^2*b^2*1

=a^2b^2

=(ab) ^2 ans..

Similar questions