if x=a secα+b tanα and y=a tanα+b secα, prove that x^2-y^2=a^2 -b^2
Answers
Answered by
3
Answer:
Step-by-step explanation:
X^2-y^2
=(a sec@+b tan@)^2 - (a tan@+b sec@)^2
=a^2sec^2@+b^2tan^2@+2absec@tan@-(a^2tan^2@+b^2sec^2@+2absec@tan@
=a^2sec^2@+b^2tan^2@+2absec@tan@-a^2tan^2@-b^2sec^2@-2absec@tan@
=(a^2sec^2@-a^2tan^2@)+(b^2tan^2@-b^2sec^2@)
=(a^2sec^2@-a^2tan^2@)-(b^2sec^2@-b^2tan^2@)
=a^2(sec^2@-tan^2@)-b^2(sec^2@-tan^2@)
=a^2(1)-b^2(1)
=a^2-b^2
rudrani47:
thanks
Similar questions