If x=a sec +b tan ; y=a tan +b sec prove x^2 - y^2 =a^2 -b^2
Answers
Answered by
5
x=asecθ+btanθ
∴, x²=a²sec²θ+2absecθtanθ+b²tan²θ
y=atanθ+bsecθ
∴, y²=a²tan²θ+2absecθtanθ+b²sec²θ
x²-y²
=a²sec²θ+2absecθtanθ+b²tan²θ-a²tan²θ-2absecθtanθ-b²sec²θ
=a²(sec²θ-tan²θ)-b²(sec²θ-tan²θ) [∵, sec²θ-tan²θ=1]
=a²-b²
∴, x²=a²sec²θ+2absecθtanθ+b²tan²θ
y=atanθ+bsecθ
∴, y²=a²tan²θ+2absecθtanθ+b²sec²θ
x²-y²
=a²sec²θ+2absecθtanθ+b²tan²θ-a²tan²θ-2absecθtanθ-b²sec²θ
=a²(sec²θ-tan²θ)-b²(sec²θ-tan²θ) [∵, sec²θ-tan²θ=1]
=a²-b²
ARoy:
Please mark this as Brainliest Answer, Thanks
Answered by
2
To Prove: x^2 - y^2 = a^2 - b^2.
Proof:
Given that,
- x = a sec A + b tan A
- y = a tan A + b sec A
By adding and subtracting x and y, we get:
(x + y) = a sec A + b tan A + a tan A + b sec A
=> (x + y) = (sec A + tan A)a + (sec A + tan A)b = (a + b)(sec A + tan A) _(1)
Similarly,
(x - y) = a sec A + b tan A - a tan A - b sec A
=> (x - y) = (sec A - tan A)a - (sec A - tan A)b = (a - b)(sec A - tan A) _(2)
Now,
Multiplying (1) w/ (2):-
(x + y)(x - y) = (a + b)(sec A + tan A)(a - b)(sec A - tan A)
=> x^2 - y^2 = a^2 - b^2(sec^2A - tan^A)
=> x^2 - y^2 = a^2 - b^2 (as sec^2A - tan^A = 1).
Hence, proved.
Similar questions
Social Sciences,
8 months ago
Computer Science,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago
Music,
1 year ago