if x = a sec theta and y = b tan theta ,
then find the value of b²x²-a²y²
Answers
Answered by
10
Given :
Solution:
Using identity,
∴ from (1) and (2)
By cross multiplying.
Multiplying both sides by a^2b^2
b^2 x^2 - a^2 y^2= a^2 b^2
∴Value is a^2 b^2
Answered by
56
Given,
- x = a sec θ
- y = b tan θ
To Find,
- The values of b²x² - a²y².
According to question,
Given, x = a sec θ
⇒ x/a = sec θ
Given, y = b tan θ
⇒ y/b = tan θ
We know that,
sec²θ - tan²θ = 1
[ Put the values ]
⇒ (x/a)² - (y/b)² = 1
⇒ x²/a² - y²/b² = 1
⇒ b²x² - a²y²/a².b² = 1
⇒ b²x² - a²y² = a².b²
Therefore,
The value of b²x² - a²y² is a².b².
For information :
Reciprocal Identities,
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- cot θ = 1/tan θ
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
Similar questions
Social Sciences,
3 months ago
Math,
3 months ago
World Languages,
3 months ago
English,
6 months ago
English,
6 months ago
History,
11 months ago
Social Sciences,
11 months ago