Math, asked by vanshikavikal448, 6 months ago

if x = a sec theta and y = b tan theta ,
then find the value of b²x²-a²y² ​

Answers

Answered by Anonymous
10

Given :

x = a  \secθ \\ y = b \:  \tanθ

Solution:

 \frac{x}{a}  =  \secθ.............(1) \\   \\ \frac{y}{b}  =  \tan θ..............(2)

Using identity,

 { \secθ}^{2}  -  { \tan θ}^{2}  = 1 \\

from (1) and (2)

( { \frac{x}{a} )}^{2}  - (  { \frac{y}{b} )}^{2}  = 1 \\

  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1

By cross multiplying.

   \frac{ {b}^{2}  {x}^{2}  - {a}^{2}  {y}^{2}  }{ {a}^{2}  {b}^{2}  }  = 1</strong><strong>\</strong><strong>\</strong><strong> </strong></p><p>\: \: \\</p><p><strong>

Multiplying both sides by a^2b^2

b^2 x^2 - a^2 y^2= a^2 b^2

Value is a^2 b^2

Answered by Anonymous
56

Given,

  • x = a sec θ
  • y = b tan θ

To Find,

  • The values of b²x² - a²y².

According to question,

Given, x = a sec θ

x/a = sec θ

Given, y = b tan θ

y/b = tan θ

We know that,

sec²θ - tan²θ = 1

[ Put the values ]

⇒ (x/a)² - (y/b)² = 1

⇒ x²/a² - y²/b² = 1

⇒ b²x² - a²y²/a².b² = 1

b² - = .

Therefore,

The value of b²x² - a²y² is a².b².

For information :

Reciprocal Identities,

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
Similar questions