If x=a sec theta+b tan theta ,y=a tan theta +b sec theta prove that x 2 -y 2 =a 2 -b 2
Answers
Answered by
204
let A = theta
x² - y² = a² sec² A + b² tan² A + 2 ab secA tan A
- (a² tan² A + b² sec²A + 2ab tanA secA)
= a² (sec²A - tan²A) + b² (sec²A - tan²A)
= a² - b²
x² - y² = a² sec² A + b² tan² A + 2 ab secA tan A
- (a² tan² A + b² sec²A + 2ab tanA secA)
= a² (sec²A - tan²A) + b² (sec²A - tan²A)
= a² - b²
Answered by
117
Answer :-
→ x² - y² = a² - b² .
Step-by-step explanation :-
We have,
x = a sec ∅ + b tan ∅ .
y = a tan ∅ + b sec ∅ .
°•° x² –y² .
= (a sec ∅ + b tan ∅)² – (a tan ∅ + b sec ∅ )² .
= ( a² sec²∅ + b²tan²∅ + 2 ab sec ∅. tan∅ ) – (a² tan²∅ + b² sec²∅ + 2ab sec ∅. tan∅ ) .
= a² sec²∅ + b² tan²∅+ 2ab sec∅. tan∅ – a²tan²∅ – b²sec²∅ – 2ab sec ∅.tan∅
= a² (sec²∅ – tan²∅ ) + b²(tan²∅ – sec²∅ ) .
= a² – b² .
Hence, it is proved.
Similar questions