Math, asked by njagruthishankar, 7 months ago

if x= a sec tita + b tan tita and y = a tan tita + b sec tita , then prove that x²-y²=a²-b²​

Answers

Answered by anindyaadhikari13
2

\star\:\:\:\sf\large\underline\blue{Answer:-}

Given,

 \sf x = a \sec(x)  + b \tan(x)

 \sf   y = a \tan(x)  + b \sec(x)

To prove:-

 \sf {x}^{2}  -  {y}^{2}  =  {a}^{2}  -  {b}^{2}

Proof:-

 \sf {x}^{2}  -  {y}^{2}

 \sf =  {(a \sec(x)  + b \tan(x)) }^{2}  -  {(a \tan(x) + b  \sec(x)  )}^{2}

 \sf =  {a}^{2}  { \sec }^{2} (x) +  {b}^{2}  \tan^{2}(x)  + 2ab \sec(x)  \tan(x )  -  {a}^{2}  { \tan}^{2} (x) -  {b}^{2}  { \sec }^{2} (x) - 2ab \sec(x)  \tan(x)

 \sf =  {a}^{2} ( { \sec }^{2} (x) -  \tan ^{2} (x) ) +  {b}^{2} ( \tan ^{2} (x)  -  \sec^{2} (x) )

 \sf {a}^{2}  \times 1 -  {b}^{2} ( \sec ^{2} (x)  -  \tan ^{2} (x) )

  \sf=  {a}^{2}  -  {b}^{2}  \times 1

 \sf =   {a}^{2}  -  {b}^{2}

Therefore,

 \boxed{ \sf \large {x}^{2} -  {y}^{2}  =  {a}^{2} -  {b}^{2}   }

Hence Proved.

Answered by sitangshubhandari
0

Answer:

\\:\:\:\\\\{:-}⋆

:−

,

\ = \() + \()=()+()

\ = \() + \()=()+()

:-

\ {}^{2} - {}^{2} = {}^{2} - {}^{2}

2

2

=

2

2

:-

\ {}^{2} - {}^{2}

2

2

\ = {( \() + \()) }^{2} - {( \() + \() )}^{2}=(()+())

2

−(()+())

2

\ = {}^{2} { \ }^{2} () + {}^{2} \^{2}() + 2 \() \( ) - {}^{2} { \}^{2} () - {}^{2} { \ }^{2} () - 2 \() \()=

2

2

()+

2

2

()+2()()−

2

2

()−

2

2

()−2()()

\ = {}^{2} ( { \ }^{2} () - \ ^{2} () ) + {}^{2} ( \ ^{2} () - \^{2} () )=

2

(

2

()−

2

())+

2

(

2

()−

2

())

\ {}^{2} \ 1 - {}^{2} ( \ ^{2} () - \ ^{2} () )

2

×1−

2

(

2

()−

2

())

\= {}^{2} - {}^{2} \ 1=

2

2

×1

\ = {}^{2} - {}^{2}=

2

2

,

\{ \ \ {}^{2} - {}^{2} = {}^{2} - {}^{2} }

2

2

=

2

2

.

Similar questions