if x= a sec tita + b tan tita and y = a tan tita + b sec tita , then prove that x²-y²=a²-b²
Answers
Answered by
2
Given,
To prove:-
Proof:-
Therefore,
Hence Proved.
Answered by
0
Answer:
\\:\:\:\\\\{:-}⋆
:−
,
\ = \() + \()=()+()
\ = \() + \()=()+()
:-
\ {}^{2} - {}^{2} = {}^{2} - {}^{2}
2
−
2
=
2
−
2
:-
\ {}^{2} - {}^{2}
2
−
2
\ = {( \() + \()) }^{2} - {( \() + \() )}^{2}=(()+())
2
−(()+())
2
\ = {}^{2} { \ }^{2} () + {}^{2} \^{2}() + 2 \() \( ) - {}^{2} { \}^{2} () - {}^{2} { \ }^{2} () - 2 \() \()=
2
2
()+
2
2
()+2()()−
2
2
()−
2
2
()−2()()
\ = {}^{2} ( { \ }^{2} () - \ ^{2} () ) + {}^{2} ( \ ^{2} () - \^{2} () )=
2
(
2
()−
2
())+
2
(
2
()−
2
())
\ {}^{2} \ 1 - {}^{2} ( \ ^{2} () - \ ^{2} () )
2
×1−
2
(
2
()−
2
())
\= {}^{2} - {}^{2} \ 1=
2
−
2
×1
\ = {}^{2} - {}^{2}=
2
−
2
,
\{ \ \ {}^{2} - {}^{2} = {}^{2} - {}^{2} }
2
−
2
=
2
−
2
.
Similar questions
India Languages,
3 months ago
Math,
3 months ago
History,
3 months ago
Psychology,
7 months ago
Math,
7 months ago
Physics,
1 year ago