If x = a secA + b tanA and y = a tanA + b secA,prove that x^2 - y^2 = a^2 - b^2
Answers
Answered by
3
Answer:
given x=a sec A+btan A ...[1]
y=a tan A+bsec A...[2]
squaring and sub (1)-(2)on both sides
there fore x^2-y^2=a^2 sec^2A+b^2 tan^2A-(a^2tan^2 A+b^2 sec ^2A)
where sec A=1+tan A
a^2(sec^2A-tan^2A)+b^2(tan^2A-sec^2A) where tan A-sec A=-1
a^2(1)+b^2(-1)
there fore x^2-y^2=a^2-b^2
Lhs=Rhs
Hence proved
a^21+ tan^2a+b^2tan^2A
Similar questions