If x = a(secA + tanA)² and y = b(secA - tanA)⁴, then x⁴y² =
Answers
Answer:
- x = a(secA + tanA)²
- y = b(secA - tanA)⁴
- x⁴y² = ?
First we will find the value of x², as after that only we can find the value of x⁴ :
⇒ x = a(secA + tanA)²
- Squaring both sides
⇒ (x)² = [a(secA + tanA)²]²
⇒ x² = a²(secA + tanA)⁴
⠀⠀⠀⠀⠀───────────────
• According to the Question :
- Multiplying both term i.e. x² and y
⇢ x².y = a²(secA + tanA)⁴ × b(secA - tanA)⁴
⇢ x²y = a²b(secA + tanA)⁴(secA - tanA)⁴
- Taking power 4 in common
⇢ x²y = a²b[(secA + tanA)(secA - tanA)]⁴
- (a + b)(a - b) = a² - b²
⇢ x²y = a²b[sec²A - tan²A]⁴
- 1 + tan²A = sec²A ; sec²A - tan²A = 1
⇢ x²y = a²b[1]⁴
⇢ x²y = a²b
- Squaring both sides
⇢ (x²y)² = (a²b)²
⇢ x⁴y² = a⁴b²
∴ Hence, required value of x⁴y² is a⁴b².
Answer:
- The value of x⁴y² is a⁴b².
Step-by-step explanation:
Given that:
- x = a(secA + tanA)²
- y = b(secA - tanA)⁴
To Find:
- The value of x⁴y².
Identities used:
- sec²A - tan²A = 1
Finding the value of x²:
⇒ x = a(secA + tanA)²
- Squaring both sides,
⇒ x² = {a(secA + tanA)²}²
⇒ x² = a²(secA + tanA)⁴
Finding the value of x⁴y²:
⇒ x²y = a²(secA + tanA)⁴•b(secA - tanA)⁴
⇒ x²y = a²b(secA + tanA)⁴•(secA - tanA)⁴
- Taking power common,
⇒ x²y = a²b{(secA + tanA)(secA - tanA)}⁴
- [(a + b) (a - b) = a² - b²]
⇒ x²y = a²b{(sec²A - tan²A}⁴
- [sec²A - tan²A = 1]
⇒ x²y = a²b(1)⁴
⇒ x²y = a²b
- Squaring both sides,
⇒ (x²y)² = (a²b)²
⇒ x⁴y² = a⁴b²