Math, asked by sharanyalanka7, 3 months ago

If x = a(secA + tanA)² and y = b(secA - tanA)⁴, then x⁴y² = ​

Answers

Answered by ZAYNN
11

Answer:

  • x = a(secA + tanA)²
  • y = b(secA - tanA)⁴
  • x⁴y² = ?

First we will find the value of x², as after that only we can find the value of x⁴ :

⇒ x = a(secA + tanA)²

  • Squaring both sides

⇒ (x)² = [a(secA + tanA)²]²

⇒ x² = a²(secA + tanA)⁴

⠀⠀⠀⠀⠀───────────────

According to the Question :

  • Multiplying both term i.e. x² and y

⇢ x².y = a²(secA + tanA)⁴ × b(secA - tanA)⁴

⇢ x²y = a²b(secA + tanA)⁴(secA - tanA)⁴

  • Taking power 4 in common

⇢ x²y = a²b[(secA + tanA)(secA - tanA)]⁴

  • (a + b)(a - b) = a² - b²

⇢ x²y = a²b[sec²A - tan²A]⁴

  • 1 + tan²A = sec²A ; sec²A - tan²A = 1

⇢ x²y = a²b[1]⁴

⇢ x²y = a²b

  • Squaring both sides

⇢ (x²y)² = (a²b)²

xy² = ab²

Hence, required value of xy² is ab².

Answered by TheBrainliestUser
10

Answer:

  • The value of x⁴y² is a⁴b².

Step-by-step explanation:

Given that:

  • x = a(secA + tanA)²
  • y = b(secA - tanA)⁴

To Find:

  • The value of x⁴y².

Identities used:

  • sec²A - tan²A = 1

Finding the value of x²:

⇒ x = a(secA + tanA)²

  • Squaring both sides,

⇒ x² = {a(secA + tanA)²}²

⇒ x² = a²(secA + tanA)⁴

Finding the value of x⁴y²:

⇒ x²y = a²(secA + tanA)⁴•b(secA - tanA)⁴

⇒ x²y = a²b(secA + tanA)⁴•(secA - tanA)⁴

  • Taking power common,

⇒ x²y = a²b{(secA + tanA)(secA - tanA)}⁴

  • [(a + b) (a - b) = a² - b²]

⇒ x²y = a²b{(sec²A - tan²A}⁴

  • [sec²A - tan²A = 1]

⇒ x²y = a²b(1)⁴

⇒ x²y = a²b

  • Squaring both sides,

⇒ (x²y)² = (a²b)²

⇒ x⁴y² = a⁴b²

Similar questions