Math, asked by chrislinrose311, 5 months ago

if x=a secAcosB, y=b secA sinB, z=c tanA prove that x2/a2 + y2/b2 -z2/c2=1

Answers

Answered by Anonymous
6

Solution :

   \blue{\sf{LHS= \dfrac{x^{2} }{  {a}^{2} }} +  \dfrac{ {y}^{2} }{ {b}^{2} }  +  \dfrac{ {z}^{2} }{ {c}^{2} }} \\  \\  \implies \sf{ \frac{ (a \: sec \: cos \: B)^{2} }{ {a}^{2} } } + { \frac{ (b \: sec \: cos \: B)^{2} }{ {b}^{2} } }   - { \frac{ (c \: tan\:A)^{2} }{ {c}^{2} } } \\  \\  \implies \sf{{ \frac{ a^{2} \: sec^{2}  \: cos^{2} \: B }{ {a}^{2} } }} + { \frac{ b^{2} \: sec^{2}  \: cos^{2}  \: B }{ {b}^{2} } } - { \frac{ c^{2}  \: tan^{2} A }{ {c}^{2} } } \\  \\  \implies \sf{sec^{2}  A  \: cos^{2}  B  +  \: sec^{2}  A  \: sin ^{2} \:  B  - tan^{2}  \: A}\\  \\  \implies \sf{ sec^{2}  \:  A \:  (cos^{2} \:   B + sin^{2}  B) - tan^{2}  A} \\  \\  \implies \sf{sec^{2}  \:  A - tan^{2}  A  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (\because{cos B + sin B = 1)}} \\  \\ \implies {\boxed{\sf {\red{1 = RHS}}}}{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf (\because{sec^{2} a -  tan^{2}  a = 1)} }

Answered by Anonymous
89

Given:

\sf \Rrightarrow x = a \sec A \cos B   \\ \sf \Rrightarrow y = b \sec A \sin B \\ \sf \Rrightarrow z = c \tan A

Prove That:

\sf \Rrightarrow  \dfrac{ {x}^{2} }{ {a}^{2} }  +  \dfrac{ {y}^{2} }{ {b}^{2} }  -  \dfrac{ {z}^{2} }{ {c}^{2} }  = 1

Proof:

\sf \to x = a \sec A \cos B

\sf \implies  \dfrac{x}{a}  =  \sec A \cos B

____________

\sf \to y = b \sec A \sin B

\sf \implies  \dfrac{y}{b}  =  \sec A \sin B

_____________

\sf \to z = c \tan A

\sf \implies  \dfrac{z}{c}  =  \tan A

_____________

Now,

\sf \to  \dfrac{ {x}^{2} }{ {a}^{2} }  +  \dfrac{ {y}^{2} }{ {b}^{2} }  -  \dfrac{ {z}^{2} }{ {c}^{2} }  = 1

\sf L.H.S =   \dfrac{ {x}^{2} }{ {a}^{2} }  +  \dfrac{ {y}^{2} }{ {b}^{2} }  -  \dfrac{ {z}^{2} }{ {c}^{2} }

 \sf =   {( \sec A \cos B) }^{2}  + {( \sec A \sin B) }^{2} -  { \tan}^{2} A

 \sf =   {\sec}^{2} A{\cos }^{2} B + {\sec}^{2}  A{ \sin}^{2} B -  { \tan}^{2} A

 \sf =   {\sec}^{2} A({\cos }^{2} B  + { \sin}^{2} B) -  { \tan}^{2} A

 \sf =   {\sec}^{2} A \times 1 -  { \tan}^{2} A

\sf \begin{cases} \because  { \sin}^{2} \theta + { \cos}^{2}  \theta = 1 \\ \sf { \sec}^{2}  \theta -   { \tan}^{2}  \theta = 1 \end{cases} \Bigg \}

 \sf =   {\sec}^{2} A  -  { \tan}^{2} A = 1 = R.H.S

Hence, Proved

L.H.S = R.H.S

____________

\sf \looparrowright  \dfrac{ {x}^{2} }{ {a}^{2} }  +  \dfrac{ {y}^{2} }{ {b}^{2} }  -  \dfrac{ {z}^{2} }{ {c}^{2} }  = 1

Similar questions