Math, asked by BrainlyHelper, 1 year ago

If x=(a^sin^-1 t)^1/2 ,y=(acos^-1 t)^1/2 show that dy/dx=-y/x

Answers

Answered by abhi178
1
x=\sqrt{a^{sin^{-1}t}}
now differentiate x with respect to t,
\frac{dx}{dt}=\frac{d(\sqrt{a^{sin^{-1}t}})}{dt}\\\\=\frac{1}{2\sqrt{a^{sin^{-1}t}}}.a^{sin^{-1}t}.loga.\frac{1}{\sqrt{1-t^2}}\\\\=\frac{\sqrt{a^{sin^{-1}t}}.loga}{2\sqrt{1-t^2}}\\\\=\frac{xloga}{2\sqrt{1-t^2}}----(1)

similarly, y=\sqrt{a^{cos^{-1}t}}
now differentiate y with respect to t,
then we get,
\frac{dy}{dt}=\frac{d(\sqrt{a^{cos^{-1}t}})}{dt}\\\\=\frac{1}{2\sqrt{a^{cos^{-1}t}}}.a^{cos^{-1}t}.loga.\frac{-1}{\sqrt{1-t^2}}\\\\=\frac{-yloga}{2\sqrt{1-t^2}}-----(2)

now, dividing equations (2), by (1),
\frac{dy}{dx}=\frac{\frac{-yloga}{2\sqrt{1-t^2}}}{\frac{xloga}{2\sqrt{1-t^2}}}\\\\=\frac{-y}{x}

hence , dy/dx = -y/x [ proved/]
Similar questions