If x = a sin θ and y = b cos θ, what is the value of b²x²=a²y²?
Answers
Answered by
2
Answer:
The value of b²x² + a²y² is a²b².
Step-by-step explanation:
Given : x = a sin θ and y = b cos θ
On Substituting the values of x and y in the given expression b²x² + a²y²,
b²x² + a²y² = b²(a sin θ)² + a²(b cos θ)²
= b²a²sin²θ + a²b²cos²θ
= a²b²(sin²θ + cos²θ)
= a²b² × 1
[By using the identity , sin² θ + cos² θ = 1]
b²x² + a²y² = a²b²
Hence, the value of b²x² + a²y² is a²b².
HOPE THIS ANSWER WILL HELP YOU...
Answered by
1
Answer:
a²b²
Step-by-step explanation:
Given: x = a sinθ
y = b cosθ
Now,
b²x² + a²y² (given)
Putting given values in it, we get
→ b²(a sinθ)² + a²(b cosθ)²
→ b²(a²sin²θ) + a²(b²cos²θ)
→ a²b²sin²θ + a²b²cos²θ
→ a²b²(sin²θ + cos²θ)
→ a²b²(1)
{ Identity : sin²θ + cos²θ = 1 }
→ a²b²
Similar questions