If x = a sin θ + b cos θ and y = a cos θ - b sin θ, prove that X 2 + y 2 = a 2 + b 2
Answers
Answered by
7
x=asinθ+bcosθ
∴, x²=(asinθ+bcosθ)²
=a²sin²θ+2absinθcosθ+b²cos²θ
y=acosθ-bsinθ
∴, y²=(acosθ-bsinθ)²
=a²cos²θ-2absinθcosθ+b²sin²θ
∴, x²+y²=a²sin²θ+2absinθcosθ+b²cos²θ+a²cos²θ-2absinθcosθ+b²sin²θ
=a²(sin²θ+cos²θ)+b²(sin²θ+cos²θ)
=a²+b² (Proved) [∵, sin²θ+cos²θ²=1]
∴, x²=(asinθ+bcosθ)²
=a²sin²θ+2absinθcosθ+b²cos²θ
y=acosθ-bsinθ
∴, y²=(acosθ-bsinθ)²
=a²cos²θ-2absinθcosθ+b²sin²θ
∴, x²+y²=a²sin²θ+2absinθcosθ+b²cos²θ+a²cos²θ-2absinθcosθ+b²sin²θ
=a²(sin²θ+cos²θ)+b²(sin²θ+cos²θ)
=a²+b² (Proved) [∵, sin²θ+cos²θ²=1]
Similar questions