Math, asked by PalakKharbanda, 2 months ago

If x=a sin pt and y=b cos pt ,find the value of d²y/dx² at t=0 . Also show that (a²-x²)y d²y/dx² + b²=0​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = a \: sinpt -  -  - (1)

and

\rm :\longmapsto\:y = b \: cospt -  -  - (2)

On differentiating equation (1) w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}x = \dfrac{d}{dt}a \: sinpt

\rm :\longmapsto\:\dfrac{dx}{dt} =a \dfrac{d}{dt} \: sinpt

\rm :\longmapsto\:\dfrac{dx}{dt} =a \: cospt \dfrac{d}{dt} \: pt

\rm :\longmapsto\:\dfrac{dx}{dt} =a \: p \: cospt  -  -  - (3)

Now,

On differentiating equation (2), w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}y = \dfrac{d}{dt}b \: cospt

\rm :\longmapsto\:\dfrac{dy}{dt} =b \dfrac{d}{dt} \: cospt

\rm :\longmapsto\:\dfrac{dy}{dt} =b( - sinpt) \dfrac{d}{dt} \:pt

\rm :\longmapsto\:\dfrac{dy}{dt} =-b \: p  \: sinpt -  -  - (4)

Now,

We know,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{\dfrac{dy}{dt}}{ \:  \:  \: \dfrac{dx}{dt} \:  \:  \: }

On substituting the values from equation (3) and (4), we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ -  \: bp \: sinpt}{ \:  \:  \: ap \: cospt \:  \:  \: }

\rm :\longmapsto\:\dfrac{dy}{dx} =  -  \: \dfrac{b}{a} \: tanpt

Now, Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \dfrac{d}{dx}\: \dfrac{b}{a} \: tanpt

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{b}{a}  \: \dfrac{d}{dx}\: tanpt

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{b}{a}  \:  {sec}^{2}pt \:  \dfrac{d}{dx}\: pt

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{bp}{a}  \:  {sec}^{2}pt \:  \dfrac{dt}{dx}\:

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{bp}{a}  \:  {sec}^{2}pt \:   \: \dfrac{1}{ap \: cospt}\:

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{b}{ {a}^{2} }  \:  {sec}^{2}pt \:   \: \dfrac{1}{cospt}\:

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{b}{ {a}^{2} }  \:   \:   \: \dfrac{1}{cos^{2} pt}\:\dfrac{b}{y}

[ using (2) ]

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{ {b}^{2} }{ {a}^{2} }  \:   \:   \: \dfrac{1}{(1 - sin^{2} pt)}\:\dfrac{1}{y}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{ {b}^{2} }{ {a}^{2} }  \:   \:   \: \dfrac{1}{1 - \dfrac{ {x}^{2} }{ {a}^{2} }}\:\dfrac{1}{y}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \: \dfrac{ {b}^{2} }{ {a}^{2} }  \:   \:   \: \dfrac{1}{ \dfrac{  {a}^{2}  - {x}^{2} }{ {a}^{2} }}\:\dfrac{1}{y}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} } =  -  \dfrac{ {b}^{2} }{( {a}^{2}  -  {x}^{2} )y}

\rm :\longmapsto\:( {a}^{2} -  {x}^{2})y  \dfrac{ {d}^{2} y}{d {x}^{2} } = -  {b}^{2}

\rm :\longmapsto\:( {a}^{2} -  {x}^{2})y  \dfrac{ {d}^{2} y}{d {x}^{2} } +  {b}^{2} = 0

Hence, Proved.

Now,

When t = 0,

\rm :\longmapsto\:x = a \: sinpt  = a \times 0 = 0

and

\rm :\longmapsto\:y = b \: cospt  = b \times 1 = b

Now, Substitute these values of x and y in

\rm :\longmapsto\:( {a}^{2} -  {x}^{2})y  \dfrac{ {d}^{2} y}{d {x}^{2} } +  {b}^{2} = 0

we get

\rm :\longmapsto\:( {a}^{2} -  {0}^{2})b  \dfrac{ {d}^{2} y}{d {x}^{2} } +  {b}^{2} = 0

\rm :\longmapsto\:b{a}^{2}\dfrac{ {d}^{2} y}{d {x}^{2} } +  {b}^{2} = 0

\rm :\longmapsto\:b{a}^{2}\dfrac{ {d}^{2} y}{d {x}^{2} }  =  - {b}^{2}

\rm :\longmapsto\:{a}^{2}\dfrac{ {d}^{2} y}{d {x}^{2} }  =  - {b}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{d {x}^{2} }  =  -  \: \dfrac{b}{ {a}^{2} }

Similar questions