If
x= a sin(t) - b cos(t) and
y= a cos(t) + b sin(t)
find d²y/dx²
PLEASE ANSWER FAST!!!!
Answers
Answered by
1
We can write
dydx=dydtdxdt
Since, x=a(t+sint)
⟹dxdt=a(1+cost)
And y=a(1−cost)
⟹dydt=a[0−(−sint)]=asint
Therefore,
dydx=asinta(1+cost)=2sint2 cost22cos2 t2
=tan(t2)
Thus our first answer:
dydx=tan(t2)
Now for the second
d2ydx2=ddx(dydx)
Thus,
d2ydx2=sec2 (t2)⋅12⋅dtdx
Since,
dtdx=1dxdt=1a(1+cost)
Therefore,
d2ydx2=12sec2(t2)1a(1+cost)
d2ydx2=sec2 t22a⋅2cos2 t2
Hence the final result,
d2ydx2=sec4 t24a
Hope that helps :)
I hope you are understand my solution
Similar questions