Math, asked by vadlakondasirish, 2 months ago

if x= a sin teta y = b tan teta then prove that a²/x²-b²/y²=1​

Answers

Answered by MagicalBeast
2

Given :

  • x = a sinθ
  • y = b tanθ

To prove :

 \sf \:  \dfrac{ {a}^{2} }{ {x}^{2} }  -  \dfrac{ {b}^{2} }{ {y}^{2} } \:   = \:  1

Identity used :

  • tanθ = sinθ /cosθ
  • sin²θ + cos²θ = 1

Solution :

x = a sinθ

 \sf \implies \:  \dfrac{a}{x}  \:  =  \:  \dfrac{1}{ \sin(  \theta) }  \:  \:  \:  \: equation \: 1

_______________________________________________

y = b tanθ

\sf \implies \:  \dfrac{b}{y}  \:  =  \:  \dfrac{1}{ \tan(  \theta) }  \:  \:  \:  \: equation \: 2

_______________________________________________

Now we need to prove that

\sf \:  \dfrac{ {a}^{2} }{ {x}^{2} }  -  \dfrac{ {b}^{2} }{ {y}^{2} } \:   = \:  1

Taking RHS = 1

Now Taking , LHS

\sf \implies \: LHS \:=\dfrac{ {a}^{2} }{ {x}^{2} }  -  \dfrac{ {b}^{2} }{ {y}^{2} } \:

\sf \implies \: LHS \:= \:  \bigg(\dfrac{ {a}}{ {x}} \bigg)^{2}   -   \:  \bigg(\dfrac{ {b}}{ {y} }\bigg)^{2} \:

Put value of (a/x) and (b/y) from equation 1 and 2 respectively

\sf \implies \: LHS \:= \:  \bigg(\dfrac{ {1}}{ { \sin( \theta) }} \bigg)^{2}   -   \:  \bigg(\dfrac{ {1}}{ { \tan( \theta) } }\bigg)^{2} \:

\sf \implies \: LHS \:= \:  \dfrac{ {1}}{ { \sin^{2} ( \theta) }}     \: -    \: \bigg(\dfrac{ { \cos( \theta) }}{ {  \sin( \theta)  } }\bigg)^{2} \:

\sf \implies \: LHS \:= \:  \dfrac{ {1}}{ { \sin^{2} ( \theta) }}     \: -    \: \dfrac{ { \cos^{2} ( \theta) }}{ {  \sin^{2} ( \theta)  } }\:

\sf \implies \: LHS \:= \:     \: \dfrac{ { 1 - \cos^{2} ( \theta) }}{ {  \sin^{2} ( \theta)  } }\:

\sf \implies \: LHS \:= \:     \: \dfrac{ {  \sin^{2} ( \theta) }}{ {  \sin^{2} ( \theta)  } }\:

\sf \implies \: LHS \:= \:1

_______________________________________________

RHS = 1 = LHS

Hence proved

Similar questions