If x=a sin theta and y= a cos theta find the value of x2 +y2.
Answers
Answered by
125
hy
Given
x=a sin theta
y= a cos theta
x sq + y sq
= (a sin theta)sq + (a cos theta)sq
= a sq sin sq theta +a sq cos sq theta
=a sq (sin sq theta + cos sq theta)
= a sq ×1
= a sq Ans
Hope it helps
Given
x=a sin theta
y= a cos theta
x sq + y sq
= (a sin theta)sq + (a cos theta)sq
= a sq sin sq theta +a sq cos sq theta
=a sq (sin sq theta + cos sq theta)
= a sq ×1
= a sq Ans
Hope it helps
Answered by
58
x =a sintheta & y = a cos theta
x^2+ y^2 = a^2sin^2theta + a^2cos^2theta
= a^2(sin^2theta + cos^2theta)= a^2 ( 1) since sin^2theta + cos^2theta = 1
thus x^2 + y^2 = a^2.
x^2+ y^2 = a^2sin^2theta + a^2cos^2theta
= a^2(sin^2theta + cos^2theta)= a^2 ( 1) since sin^2theta + cos^2theta = 1
thus x^2 + y^2 = a^2.
Similar questions