if X = a sin theta and y = b tan theta
then prove that
a^2 / x^2 - b^2 / y^2 = 1
Answers
Answered by
2
Step-by-step explanation:
We have ,
L.H.S=x2a2−y2b2
⇒L.H.S=a2sin2θa2−b2tan2θb2 [∵x=asinθ,y=btanθ]
⇒L.H.S=sin2θ1−tan2θ1
⇒L.H.S=cosec2θ−cot2θ [∵1+cot2θ=cosec2θ∴cosec2θ−cot2θ=1]
⇒ LHS =1= RHS
Answered by
15
Answer:
= 1 ( Proved ).
Step-by-step explanation:
X = a sin theta
Y= b tan theta
Prove: a² / x² - b² / y² = 1.
= a² / ( a sin theta )² - b² ( b tan theta )²
= a² / ( a² sin² theta ) - b² / ( b² tan² theta )
= a² / ( a² sin² theta ) - b² / b² ( sin² theta / cos² theta ) ( As tan² theta = sin² theta / cos² theta ) ( Cut a² with a² and b² with b² )
= 1 / sin² theta - ( 1 / sin² theta ) / cos² theta
= 1 / sin² theta - ( 1 × cos² theta ) / sin² theta
= 1 / sin² theta - cos² theta / sin² theta
= ( 1 - cos² theta ) / sin² theta
= sin² theta / sin² theta ( As sin² theta = ( 1 - cos² theta ) ( Cut sin² theta with sin² theta )
= 1 ( Proved ).
Thus, ( L.H.S. = R.H.S. ).
THANK YOU AND MARK MY ANSWER AS BRAINLIEST ☺️☺️
Similar questions