If x = a sin theta +b cos theta and y= a cos theta +bsin theta, prove that x² + y square = a square +b square
Answers
Answered by
15
Correct question :-
If x = a sinθ + b cosθ and y= acosθ - bsinθ, prove that x² + y² = a² + b²
Solution :-
1) x = asinθ + bcosθ
Squaring on both sides
⇒ x² = (asinθ + bsinθ)²
⇒ x² = a²sin²θ + b²cos²θ + 2ab.sinθ.cosθ ---eq(1)
2) y = acosθ - bsinθ
Squaring on both sides
⇒ y² = (acosθ - bsinθ)²
⇒ y² = a²cos²θ + b²sin²θ - 2ab.sinθ.cosθ --eq(2)
Adding eq(1) and eq(2)
⇒ x² + y² = a²sin²θ + b²cos²θ + 2ab.sinθ.cosθ + a²cos²θ + b²sin²θ - 2ab. sinθcosθ
⇒ x² + y² = a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ)
⇒ x² + y² = a²(1) + b²(1)
[ Because sin²θ + cos²θ = 1 ]
⇒ x² + y² = a² + b²
Hence proved.
Answered by
0
Answer:
please explain by step by step
Similar questions