Math, asked by ankita160595, 1 year ago

If x= a(sin theta+ cos theta)
Y= b(sin theta - cos theta). ,then x^2/a^2+y^2/b2=???

Answers

Answered by abhishekojha
8
x/a=sintheta + costheta
y/b=sin(theta)-cos(theta)
(x/a)²+(y/b)²=(sintheta +costheta)² + ( sintheta- costheta)²
sin²theta + cos²theta +2sintheta*costheta +sin²theta + cos²theta -2sintheta*costheta
2(sin²theta + cos²theta)
2*1=2
Answered by abhi569
7
x = a( sinA + cosA )


 \underline{Square  \:  \: o n \:  \:  both \:  \:  sides, }


➡ x² = a²( sinA + cosA )²

 =  > x^{2}  = a^{2} ( \bold{ sin^{2} A + cos ^{2} A} + 2sinAcosA )  \:  \:  \:    \\  \\  =   >  \frac{ {x}^{2} }{ {a}^{2} } = 1 + 2sinAcosA  \:  \:  \:  \:  \:  \:  -----: ( 1 )





y = b( sinA - cosA )



 \underline{Square  \:  \: on \:  \: both \:  \:  sides, }


➡ y² = b²( sinA - cosA )²

 <br /> =  &gt; y^{2} = b^{2} (  \bold{sin^{2} A + cos^{2} A } -  2sinAcosA ) <br /> \\  \\  =  &gt;  \frac{ {y}^{2} }{ {b}^{2} }  = 1 - 2sinAcosA  \:  \:  \:  -  -  -  -  -  -  - (2)<br />








Hence,


 \frac{{x}^{2} }{ {a}^{2} }  +   \frac{ {y}^{2} }{ {b}^{2} }



Putting values from ( i ) & ( ii ) ,


1 + 2sinAcosA + 1 - 2sinAcosA

1 + 1 + 2sinAcosA - 2sinAcosA

2








Answer : 2

ankita160595: Plz answer this one too...The average run scored by 11 players is 60.if the run scored by captain are neglected, the average of run scored by the remaining players increases by 5.How many runs were scored by captain?
abhi569: Ask your question from question bix
abhi569: Box*
Similar questions
Math, 1 year ago