Math, asked by eternalgamesshorts, 18 days ago

if x/a sin theta - y/b cos theta =1 and x/a cos theta + y/b sin theta = 1 , prove that: x²/a²+y²/b² =2





plssssss anwer​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Trigonometric equations are

\rm :\longmapsto\:\dfrac{xsin\theta }{a}  - \dfrac{ycos\theta }{b}  = 1 -  -  - (1)

and

\rm :\longmapsto\:\dfrac{xcos\theta }{a}  + \dfrac{ysin\theta }{b}  = 1 -  -  - (2)

Now, on squaring equation (1), we get

\rm :\longmapsto\: {\bigg[\dfrac{xsin\theta }{a} - \dfrac{ycos\theta }{b}  \bigg]}^{2}  = 1

\rm :\longmapsto\:\dfrac{ {x}^{2} {sin}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {cos}^{2}\theta }{ {b}^{2} }  - 2\dfrac{xsin\theta cos\theta }{ab}  = 1 -  -  - (3)

Now, On squaring equation (2), we get

\rm :\longmapsto\: {\bigg[\dfrac{xcos\theta }{a}  +  \dfrac{ysin\theta }{b}  \bigg]}^{2}  = 1

\rm :\longmapsto\:\dfrac{ {x}^{2} {cos}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {sin}^{2}\theta }{ {b}^{2} }  +  2\dfrac{xsin\theta cos\theta }{ab}  = 1 -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:\dfrac{ {x}^{2} {sin}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {cos}^{2}\theta }{ {b}^{2} } + \dfrac{ {x}^{2} {cos}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {sin}^{2}\theta }{ {b}^{2} }  = 2

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }( {cos}^{2}\theta  +  {sin}^{2}\theta ) + \dfrac{ {y}^{2} }{ {b}^{2} }( {cos}^{2}\theta  +  {sin}^{2}\theta ) = 2

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }+ \dfrac{ {y}^{2} }{ {b}^{2} } = 2

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given Trigonometric equations are

\rm :\longmapsto\:\dfrac{xsin\theta }{a}  - \dfrac{ycos\theta }{b}  = 1 -  -  - (1)

and

\rm :\longmapsto\:\dfrac{xcos\theta }{a}  + \dfrac{ysin\theta }{b}  = 1 -  -  - (2)

Now, on squaring equation (1), we get

\rm :\longmapsto\: {\bigg[\dfrac{xsin\theta }{a} - \dfrac{ycos\theta }{b}  \bigg]}^{2}  = 1

\rm :\longmapsto\:\dfrac{ {x}^{2} {sin}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {cos}^{2}\theta }{ {b}^{2} }  - 2\dfrac{xsin\theta cos\theta }{ab}  = 1 -  -  - (3)

Now, On squaring equation (2), we get

\rm :\longmapsto\: {\bigg[\dfrac{xcos\theta }{a}  +  \dfrac{ysin\theta }{b}  \bigg]}^{2}  = 1

\rm :\longmapsto\:\dfrac{ {x}^{2} {cos}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {sin}^{2}\theta }{ {b}^{2} }  +  2\dfrac{xsin\theta cos\theta }{ab}  = 1 -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:\dfrac{ {x}^{2} {sin}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {cos}^{2}\theta }{ {b}^{2} } + \dfrac{ {x}^{2} {cos}^{2}\theta }{ {a}^{2} }  + \dfrac{ {y}^{2} {sin}^{2}\theta }{ {b}^{2} }  = 2

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }( {cos}^{2}\theta  +  {sin}^{2}\theta ) + \dfrac{ {y}^{2} }{ {b}^{2} }( {cos}^{2}\theta  +  {sin}^{2}\theta ) = 2

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }+ \dfrac{ {y}^{2} }{ {b}^{2} } = 2

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions