If x= a sin theta , y = b tan theta then prove that a^2/x^2 - b^2/y^2 = 1
Answers
Answered by
1
since
x=asin@,
then
a/x =1/sin@,
a/x=cosec@,
then
a²/x² =cosec²@,..................eq(1),
since
y=a tan@,
then
a/y =cot@,
hence
a²/y²=cot²@,.......eq(2),
now subtract eq(2) from the eq(1), we have
a²/x² - a²/y²= cosec²@-cot²@,
=1,
since
cosec²@-cot²@=1
x=asin@,
then
a/x =1/sin@,
a/x=cosec@,
then
a²/x² =cosec²@,..................eq(1),
since
y=a tan@,
then
a/y =cot@,
hence
a²/y²=cot²@,.......eq(2),
now subtract eq(2) from the eq(1), we have
a²/x² - a²/y²= cosec²@-cot²@,
=1,
since
cosec²@-cot²@=1
Answered by
1
Taking L.H.S
a^2/x^2 - b^2/y^2
put the valhlue of X and Y
a^2 / (a sintheta)^2 - b^2 / (b tanthrta)^2
a^2 / a^2 sin^2 theta - b^2 / b^2 tab^2 theta
a^2 se a^ 2 cancel out ho gaya our
b^2 se b^2
1 / sin^2 theta - 1 / tan^2 theta
we know that tan theta= sin / cos
1 / sin^2 theta - 1 / sin^2 theta / cos^2 theta
1 / sin^2 they - cos^2 theta / sin^2 theta
Denomination ( sin^2 theta) is common
then,
1 - cos^2 theta / sin^2 theta
we know that (1 - cos^2 theta=1 )
therefore,. sin^2 theta / sin^2 theta
1
proved
Similar questions