Math, asked by alokekrbanerjeejpg, 4 months ago

if x = a sin thetay = b tan theta prove a²/x²-b²y²=1​

Answers

Answered by AbhinavRocks10
7

Step-by-step explanation:

ANSWER

We have ,

L.H.S=

x

2

a

2

y

2

b

2

⇒L.H.S=

a

2

sin

2

θ

a

2

b

2

tan

2

θ

b

2

[∵x=asinθ,y=btanθ]

⇒L.H.S=

sin

2

θ

1

tan

2

θ

1

⇒L.H.S=cosec

2

θ−cot

2

θ [∵1+cot

2

θ=cosec

2

θ∴cosec

2

θ−cot

2

θ=1]

⇒ LHS =1= RHS

Hence, proved

Answered by vipashyana1
0

Answer:

x = a \: sinθ \\ \frac{x}{a}   = sinθ \\  squaring \: on \: both \: the \: sides \\   { (\frac{x}{a} )}^{2} =  {(sinθ)}^{2} \\  \frac{ {x}^{2} }{ {a}^{2} }  =  {sin}^{2} θ \\  \frac{ {a}^{2} }{ {x}^{2} }   =  \frac{1}{ {sin}^{2}θ }   \\   y = b \: tan θ \\   \frac{y}{b}   = tanθ \\  squaring \: on \: both \: the \: sides \\   { (\frac{y}{b} )}^{2} =  {(tanθ)}^{2} \\  \frac{ {y}^{2} }{ {b}^{2} }  =  {tan}^{2} θ \\  \frac{ {b}^{2} }{ {y}^{2} }   =  \frac{1}{ {tan}^{2}θ } \\  \frac{ {a}^{2} }{ {x}^{2} }  -  \frac{ {b}^{2} }{ {y}^{2} }  = 1 \\   \frac{1}{ {sin}^{2}θ }  -  \frac{1}{ {tan}^{2}θ }   = 1\\    \frac{1}{ {sin}^{2} θ}  -  \frac{1}{ \frac{ {sin}^{2}θ }{ {cos}^{2}θ } } = 1  \\    \frac{1}{ {sin}^{2}θ }  -  \frac{ {cos}^{2}θ }{ {sin}^{2} θ}   = 1\\   \frac{1 -  {cos}^{2} θ}{ {sin}^{2} θ}   = 1\\   \frac{ {sin}^{2} θ}{ {sin}^{2} θ}  = 1 \\LHS=RHS \\ Hence \: proved

Similar questions