if x=a(t+sint), y=(1-cost) if dx/dy=cotp then p=
Answers
Answered by
13
Answer:
cot⁻¹ [ a ( 1 + cos t ) / ( sin t ) ]
Step-by-step explanation:
Given :
x = a ( t + sin t )
= > x = a t + a sin t
Diff. w.r.t. t :
d x / d t = a ( t )' + a ( sin t )'
= > d x / d t = a + a cos t
= > d x / d t = a ( 1 + cos t )
Also given :
y = ( 1 - cos t )
Diff. w.r.t. t :
= > d y / d t = ( 1 )' - ( cos t )'
= > d y / d t = - ( - sin t )
= > d y / d t = sin t
Now as we do in parametric function :
d x / d y = ( d x / d t ) / ( d y / d t )
= > d x / d y = a ( 1 + cos t ) / ( sin t )
Given d x / d y = cot P
cot P = a ( 1 + cos t ) / ( sin t )
P = cot⁻¹ [ a ( 1 + cos t ) / ( sin t ) ]
Hence we get required answer.
Similar questions