Math, asked by superm3an, 11 months ago

if x=a(t+sint),y=a(1-cost) if dx/dy=cotp find p​

Attachments:

Answers

Answered by ksonakshi70
13

Answer:

x = a(t +  \sin(t) ) \\   \frac{dx}{dt}  = a (1 +  \cos(t) ) \\ y = a(1 -  \cos(t) ) \\ \frac{dy}{dt}  = a( \sin(t) ) \\ hence \\    \frac{dx}{dy}  =  \frac{dx}{dt}  \times  \frac{dt}{dy}  \\   \cot(p)  =  \frac{a(1 +  \cos(t) }{a( \sin(t) )}  \\  \cot(p)  =  \frac{1 +  \cos(t) }{ \sin(t) }  \\  \cot(p)  =  \frac{2 { \cos( \frac{t}{2} ) }^{2} }{2 \sin( \frac{t}{2} )  \cos( \frac{t}{2} ) }  \\  \cot(p)  \:  =    \cot( \frac{t}{2} )  \\ hence \:  \\ p =  \frac{t}{2}

Similar questions