Math, asked by Pareekshit, 11 months ago

If x=a(t-sint),y=b(1-cost) find d2y/dx2 at t=π/2

Answers

Answered by Sharad001
78

Question :-

 \sf{if \:  x \:  = a \: (t \:  -  \sin \: t) \: } \\ \:  \:  \:  \:  \sf{ y \:  = b(1 -  \cos \: t)} \\  \\  \sf{then \: find \:  \frac{ {d}^{2} y}{ {d}^{2} \: x }  \: at \: t \:  =  \frac{ \pi}{2} }

Answer :-

 \boxed{ \pink{\sf{ \frac{ {d}^{2} y}{ {d}^{2} x} } \:  }\: at \:  \: t \:  =  \frac{ \pi}{2}  \:  = 0}

Explanation :-

We have ,

 \rightarrow \sf{ x \:  = a(t \:  -  \sin \: t)} \\  \\ \sf{ differentiate \: with \: respect \: to \: t} \\  \\ \rightarrow \:  \bf{ \frac{dx}{dt}  = a(1 -  \cos \: t)}  \:  \:  \: \\  \\    \pink{\sf{ again \: differentiate \: with \: respect \: to \: t}} \\  \\   \rightarrow \:   \sf{\frac{ {d}^{2}x }{d {t}^{2} }  = a \: (0 +  \sin \: t)} \: ......(1)

and,

\rightarrow \:  \sf{y \:  = b \: (1 -  \cos \: t)} \\  \\   \green{\sf{differentiate \: with \: respect \: to \: t}} \\  \\ \rightarrow \:  \sf{ \frac{dy}{dt}  = b \: (0 +  \sin \: t)} \\  \\ \rightarrow \:  \sf{ \frac{dy}{dt}  = b \:  \sin \: t} \:  \:  \:   \\  \\   \red{\sf{ again \: differentiate \: with \: respect \: to \: t}} \\  \\ \rightarrow \:   \sf{\frac{ {d}^{2} y}{d {x}^{2} }  = b \:  \cos \: t} \:  \:  \: .......(2)

Now ,divided (2) by (1)

\rightarrow \:   \sf{  \frac{ \frac{ {d}^{2}y }{d {t}^{2} } }{ \frac{ {d}^{2} x}{d {t}^{2} } }  = \frac{b \:  \cos \: t }{a \:  \sin \: t } } \\  \\  \:  \sf{ \frac{ {d}^{2} y}{ {d}^{2} x}  \:   \:  \:  \: at \:  \: t \:  =  \frac{ \pi}{2}}  \:  \\  \\ \rightarrow \:  \sf{ \frac{b \cos( \frac{ \pi}{2} ) }{a \:  \sin(  \frac{ \pi}{2} ) }}  \\  \\ \rightarrow \: 0

___________________________

Answered by patildips16
0

Answer:

if x=1-sint, y=1-cost, value of d2y/dx2 at(π/2) will be

Similar questions