Math, asked by poulami2, 1 year ago

if x^a.x^b.x^c=1 then show x^(a^2/bc).x^(b^2/ca).x^(c^2/ab)=x^3

Answers

Answered by shanujindal48p68s3s
2

 {x}^{a}  \times  {x}^{b}  \times  {x}^{c}  = 1 \\  {x}^{a + b + c}  =  {x}^{0}  \\ a + b + c = 0
To prove
 {x}^{ \frac{ {a}^{2} }{bc} +  \frac{ {b}^{2} }{ac}  +  \frac{ {c}^{2} }{ab}  }  =  {x}^{3}  \\ or \\  \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ac}  +  \frac{ {c}^{2} }{ab}  = 3 \\  =  \frac{ {a}^{3} +  {b}^{3} +  {c}^{3}   }{abc}
But since a+b+c is zero, therefore
 {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc
Simplifying, we get
 =  \frac{3abc}{abc}  \\  = 3
Hence proved..
Mark it as the brainliest answer
Similar questions