If (x + a) (x + b) (x + c) = x³ - 10 x² + 45 x - 15, then find the value a² + b² + c²
Answers
Answered by
7
Answer:
Step-by-step explanation:
Here, we have to use the identity
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
Comparing this with
x3 – 10x2 + 45x – 15 = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
⇒ – 10 = a + b + c
Now, 1/a + 1/b + 1/c
=> (bc+ac+ab)/abc
=> -45/15
=> -3
And (ab + bc + ca) = 45
Now (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ (– 10)2 – 2 × 45 = a2 + b2 + c2
⇒ 100 – 90 = a2 + b2 + c2
⇒ a2 + b2 + c2 = 10
Similar questions