Math, asked by senthilshrihari, 6 months ago

if (x+a)(x+b)(x+c)=x³+14x²+59x+70 find the value. . 1.(a+b+c) 2.1/a +1/b+1/c. 3.a²+b²+c². 4.a/bc+b/ac+c/ab. please help me friends i have a exam in this I will make you as brainlist ​

Answers

Answered by theunknown5
1

Answer:

Answer:

(x+a)(x+b)(x +c)=x^3+14x^2+59x+70(x+a)(x+b)(x+c)=x

3

+14x

2

+59x+70

x^3+(a+b+c)x^2+(ab+bc+ca)x+abc=x^3+14x^2+59x+70x

3

+(a+b+c)x

2

+(ab+bc+ca)x+abc=x

3

+14x

2

+59x+70

Equating corresponding coefficients on both sides we get

\boxed{a+b+c=14}

a+b+c=14

.........(1)

ab+bc+ca=59ab+bc+ca=59 .......(2)

abc=70abc=70 .........(3)

\frac{(2)}{(3)}\implies\:\frac{ab+bc+ca}{abc}=\frac{59}{70}

(3)

(2)

abc

ab+bc+ca

=

70

59

\implies\:\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=\frac{59}{70}⟹

abc

ab

+

abc

bc

+

abc

ca

=

70

59

\implies\:\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=\frac{59}{70}⟹

c

1

+

a

1

+

b

1

=

70

59

\implies\:\boxed{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{59}{70}}⟹

a

1

+

b

1

+

c

1

=

70

59

we know that

(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)(a+b+c)

2

=a

2

+b

2

+c

2

+2(ab+bc+ca)

\implies\:14^2=a^2+b^2+c^2+2(59)⟹14

2

=a

2

+b

2

+c

2

+2(59)

\implies\:196=a^2+b^2+c^2+118⟹196=a

2

+b

2

+c

2

+118

\implies\:196-118=a^2+b^2+c^2⟹196−118=a

2

+b

2

+c

2

\implies\:\boxed{a^2+b^2+c^2=78}⟹

a

2

+b

2

+c

2

=78

.....(4)

\frac{(4)}{(3)}\implies\:\frac{a^2+b^2+c^2}{abc}=\frac{78}{70}

(3)

(4)

abc

a

2

+b

2

+c

2

=

70

78

\implies\:\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{39}{35}⟹

abc

a

2

+

abc

b

2

+

abc

c

2

=

35

39

\implies\:\boxed{\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}=\frac{39}{35}}⟹

bc

a

+

ac

b

+

ab

c

=

35

39

Similar questions