if (x + a)(x + b)(x + c) = x³-6x²+11x-6 , find the value of a²+b²+c²:
those who will answer he/she will be marked as brainleist...
Answers
Answer:
14
Step-by-step explanation:
Given :
if (x + a)(x + b)(x + c) = x³- 6x² + 11x - 6 , find the value of a²+b²+c²
Solution :
By factorizing the expression,
We get,
⇒ x³- 6x² + 11x - 6
⇒ x³- x² - 5x² + 5x + 6x - 6
⇒ x² (x - 1) - 5x (x - 1) + 6(x - 1)
⇒ ( x² - 5x + 6 ) ( x - 1 )
⇒ (x² - 2x - 3x - 6) (x - 1)
⇒ (x (x - 2) - 3( x - 2) ) ( x - 1 )
⇒ (x - 3) (x - 2) (x - 1)
_
⇒ (x - 3) (x - 2) (x - 1) = (x + a)(x + b)(x + c)
By comparing,
⇒ a = -3 , b = -2 , c = -1
Hence,
⇒ a² + b² + c² = (-3)² + (-2)² + (-1)² = 9 + 4 + 1 = 14
Answer:
14
Step-by-step explanation:
Putting x =1
(1)³ -6(1)²+11(1)-6=0
one root is (x-1)
divide whole eqn by (x-1)
(x-1) | x³ -6x² + 11x -6 | x² -5x +6
x³-x²
_____________
-5x² +11x-6
-5x²+5x
_____________
6x-6
6x-6
_______
0
so eqn is x²-5x+6=0
=>x²-2x-3x+6=0
=>(x-2)(x-3)=0
so the roots are 1 ,2,3
a=-1,b=-2,c=-3
a²+b²+c²=14
Hope this helps u.
Mark as brainliest...;)
:)