if x/a=y/b=z/c,show that xz+ac/xz-ac=yz+bc/yz-bc
Answers
Answered by
2
Given : x/a=y/b=z/c
To find : Show that (xz+ac)/(xz-ac)=(yz+bc)/(yz-bc)
Solution:
Let say x/a=y/b=z/c = k
=> x = ak
y = bk
z = ck
xz+ac/xz-ac=yz+bc/yz-bc.
LHS
= (xz+ac)/(xz-ac)
= (ak.ck + ac) / (ak.ck - ac)
= ac(k² + 1) /ac(k² - 1)
= (k² + 1) /(k² - 1)
RHS
=(yz+bc)/(yz-bc0
= (bk.ck + bc) / (bk.ck - bc)
= bc(k² + 1) /bc(k² - 1)
= (k² + 1) /(k² - 1)
(k² + 1) /(k² - 1)= (k² + 1) /(k² - 1)
=> LHS = RHS
=> (xz+ac)/(xz-ac) = (yz+bc)/(yz-bc)
QED
Hence proved
Learn More:
If by+cz/b²+c²=cz+ax/c²+a²=ax+by/a²+b² then prove that x/a=y/b=z/c
https://brainly.in/question/11760840
28. If x = a(b-c), y = b(c - a), z = c(a - b), find the value ofOr2
https://brainly.in/question/12208457
Similar questions