Physics, asked by Rahan9399, 9 months ago

If x=ab² , then write relative error in x

Answers

Answered by shadowsabers03
4

Given,

\sf{\longrightarrow x=ab^2}

Taking logarithm on both sides,

\sf{\longrightarrow \log x=\log(ab^2)}

\sf{\longrightarrow \log x=\log a+2\log b}

Differentiating with respect to \sf{x,}

\sf{\longrightarrow \dfrac{d}{dx}\big[\log x\big]=\dfrac{d}{dx}\big[\log a+2\log b\big]}

\sf{\longrightarrow \dfrac{d}{dx}\big[\log x\big]=\dfrac{d}{dx}\big[\log a\big]+2\cdot\dfrac{d}{dx}\big[\log b\big]}

By chain rule,

\sf{\longrightarrow \dfrac{d}{dx}\big[\log x\big]=\dfrac{d}{da}\big[\log a\big]\cdot\dfrac{da}{dx}+2\cdot\dfrac{d}{db}\big[\log b\big]\cdot\dfrac{db}{dx}}

\sf{\longrightarrow \dfrac{1}{x}=\dfrac{1}{a}\cdot\dfrac{da}{dx}+2\cdot\dfrac{1}{b}\cdot\dfrac{db}{dx}}

\sf{\longrightarrow \dfrac{1}{x}=\dfrac{1}{dx}\cdot\dfrac{da}{a}+2\cdot\dfrac{1}{dx}\cdot\dfrac{db}{b}}

\sf{\longrightarrow \dfrac{1}{x}=\dfrac{1}{dx}\left[\dfrac{da}{a}+2\cdot\dfrac{db}{b}\right]}

\sf{\longrightarrow \dfrac{dx}{x}=\dfrac{da}{a}+2\cdot\dfrac{db}{b}}

In case of error we can rewrite the equation as,

\sf{\longrightarrow\underline{\underline{\dfrac{\Delta x}{x}=\dfrac{\Delta a}{a}+2\cdot\dfrac{\Delta b}{b}}}}

This is the relative error in \sf{x.}

Similar questions