if x= acos theta and y =b sine theta then find the value of b2x2+a2y2-a2b2. (the 2 is a square).. que .9
plxxxx
Attachments:
Answers
Answered by
192
Hey user !!
Here's the answer you are looking for
x = acosθ
y = bsinθ
So,
b²x² + a²y² - a²b²
= b² (acosθ)² + a² (bsinθ)² - a²b²
= b²a²cos²θ + a²b²sin²θ - a²b²
= a²b²cos²θ + a²b²sin²θ - a²b²
= a²b² ( cos²θ + sin²θ - 1)
= a²b² (1 - 1) [cos²θ + sin²θ = 1]
= a²b² (0)
= 0 (ans.)
★★ HOPE THAT HELPS ☺️ ★★
Here's the answer you are looking for
x = acosθ
y = bsinθ
So,
b²x² + a²y² - a²b²
= b² (acosθ)² + a² (bsinθ)² - a²b²
= b²a²cos²θ + a²b²sin²θ - a²b²
= a²b²cos²θ + a²b²sin²θ - a²b²
= a²b² ( cos²θ + sin²θ - 1)
= a²b² (1 - 1) [cos²θ + sin²θ = 1]
= a²b² (0)
= 0 (ans.)
★★ HOPE THAT HELPS ☺️ ★★
Answered by
64
hello dude,
=> acosθ
y = bsinθ
So,
b²x² + a²y² - a²b²
= b² (acosθ)² + a² (bsinθ)² - a²b²
= b²a²cos²θ + a²b²sin²θ - a²b²
= a²b²cos²θ + a²b²sin²θ - a²b²
= a²b² ( cos²θ + sin²θ - 1)
= a²b² (1 - 1) [cos²θ + sin²θ = 1]
= a²b² (0)
= 0
hope its help you:-)
=> acosθ
y = bsinθ
So,
b²x² + a²y² - a²b²
= b² (acosθ)² + a² (bsinθ)² - a²b²
= b²a²cos²θ + a²b²sin²θ - a²b²
= a²b²cos²θ + a²b²sin²θ - a²b²
= a²b² ( cos²θ + sin²θ - 1)
= a²b² (1 - 1) [cos²θ + sin²θ = 1]
= a²b² (0)
= 0
hope its help you:-)
Similar questions