Math, asked by deva2147, 7 months ago

if x/acos0=y/bsin0 and ax/cos0-bx/sin0=a²-b² prove that x²/a²+y²/b²=1​

Answers

Answered by SonalRamteke
2

Step-by-step explanation:

If x=a cosθ and y= b sinθ, then find the value of b²x² + a²y² - a²b²?

Value: 0

Work 1:

Given, x = a cos theta and y = b sin theta. Substituting for x and y ,

b²x² + a²y² - a²b² = b²a² cos² theta + a²b² sin² theta - a²b²

= a²b² (cos² theta + sin² theta) - a²b²

= a²b² . 1 - a²b² (Using the trigonometric identity cos² theta + sin² theta = 1)

= a²b² - a²b² = 0 (Proved)

Work 2:

x = a cos theta , y = b sin theta . Substituting for x,

b²x² + a²y² - a²b² = b²a² cos² theta - a²b² + a²y²

= b²a²(cos² theta-1) + a²y²

= b²a²(-sin² theta) + a²y² = -a²(b²sin² theta) + a²y² Substitute y for b sin theta.

=-a²y² + a²y²

= 0 (Proved).

I hope I help you ..

Answered by smartAbhishek11
1

hey there is answer hope you help

Attachments:
Similar questions