if x=acosø and y=bsinø then x²/a²+y²/b²
Answers
Answered by
2
Answer:
Given, x = a cos theta and y = b sin theta. Substituting for x and y ,
b²x² + a²y² - a²b² = b²a² cos² theta + a²b² sin² theta - a²b²
= a²b² (cos² theta + sin² theta) - a²b²
= a²b² . 1 - a²b² (Using the trigonometric identity cos² theta + sin² theta = 1)
= a²b² - a²b² = 0 (Proved)
Answered by
6
*Question:—
if x=acosø and y=bsinø then x²/a²+y²/b²
*Answer:—
- 0 (Proved)
Step-by-step explanation:—
x = acos∅, y = bsin∅.
Substituting for x,
b²x² + a²y² - a²b² = b²a² cos²∅ - a²b² + a²y²
= b²a²(cos²∅ -1) + a²y²
= b²a²(-sin²∅) + a²y²
= -a²(b²sin²∅) + a²y²
Substitute y for b sin∅
= -a²y² + a²y²
= 0 (Proved)
Similar questions