Math, asked by muskanmg455, 1 year ago

If x=acost and y=bsint then find d2y/dx2

Answers

Answered by priyanshuchauhan41
17
x=a cost
dx/dt=-asint
y=bsint
dy/dt=bcost
dy/dx=dy/dt/dx/dt=bcost/-acost=-b/acott
d2y/dx2=b/a×d/dt(cott)
d2y/dx2=-b/acosec^3t
Answered by hukam0685
27

Answer:

\frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{ - b \:  {cosec}^{3}t }{ {a}^{2} }  \\

Step-by-step explanation:

If

x = a \: cos \: t \\  \\ y = b \: sin \: t \\  \\

to find the value of

 \frac{ {d}^{2} y}{d {x}^{2} }  \\  \\

firstly we have to find dy/dx

For that find dx/dt and dy/dt

x = a \: cos \: t \\  \\  \frac{dx}{dt} =  - a \: sin \: t \\  \\  y = b \: sin \: t \\  \\  \frac{dy}{dt} =  b \: cos\: t \\  \\ \frac{dy}{dx}  =  \frac{dy}{dt}  \times  \frac{dt}{dx}  =  \frac{ b \: cos \: t}{ - a \: sin \: t}  \\  \\  \frac{dy}{dt}  =  \frac{ - b}{a} cot \: t \\  \\  \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{ - b}{a} ( -  {cosec}^{2} t). \frac{dt}{dx}  \\  \\ =  \frac{  b}{a} ( {cosec}^{2} t).(  \frac{ - 1}{a \: sin \: t} ) \\  \\\frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{ - b \:  {cosec}^{3}t }{ {a}^{2} }  \\  \\

Hope it helps you.

Similar questions