If x and (y - 3) vary inversely and if x = 7 when y = 5, find the value of x when y =12.
Answers
Answer:
(a) x∝
(a) x∝ y
(a) x∝ y1
(a) x∝ y1
(a) x∝ y1
(a) x∝ y1 ⇒x=
(a) x∝ y1 ⇒x= y
(a) x∝ y1 ⇒x= yk
(a) x∝ y1 ⇒x= yk
(a) x∝ y1 ⇒x= yk
(a) x∝ y1 ⇒x= yk ⇒7=
(a) x∝ y1 ⇒x= yk ⇒7= 9
(a) x∝ y1 ⇒x= yk ⇒7= 9k
(a) x∝ y1 ⇒x= yk ⇒7= 9k
(a) x∝ y1 ⇒x= yk ⇒7= 9k
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x=
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y=
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y=
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 9
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963
(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963 ∴y=7.