Math, asked by annumg108734, 8 months ago

If x and (y - 3) vary inversely and if x = 7 when y = 5, find the value of x when y =12.

Answers

Answered by namanpro30
0

Answer:

(a) x∝

(a) x∝ y

(a) x∝ y1

(a) x∝ y1

(a) x∝ y1

(a) x∝ y1 ⇒x=

(a) x∝ y1 ⇒x= y

(a) x∝ y1 ⇒x= yk

(a) x∝ y1 ⇒x= yk

(a) x∝ y1 ⇒x= yk

(a) x∝ y1 ⇒x= yk ⇒7=

(a) x∝ y1 ⇒x= yk ⇒7= 9

(a) x∝ y1 ⇒x= yk ⇒7= 9k

(a) x∝ y1 ⇒x= yk ⇒7= 9k

(a) x∝ y1 ⇒x= yk ⇒7= 9k

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x=

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y=

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y=

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 9

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963

(a) x∝ y1 ⇒x= yk ⇒7= 9k ⇒k=7×9∴k=63(b) x= y63 (c) y= x63 ⇒y= 963 ∴y=7.

Similar questions