Math, asked by manisai54, 11 months ago

If x and y are acute angles such that cosx + cosy =
and sin x + sin yr , then sin(x + y) equals to​

Answers

Answered by malathy32
0

Answer:

Given,

sin x =\frac{1}{\sqrt{5}}\text{ and }sin y = \frac{1}{\sqrt{10}}sinx=

5

1

and siny=

10

1

cos x = \sqrt{1-(\frac{1}{\sqrt{5}})^2}\text{ and }cos y = \sqrt{1-(\frac{1}{\sqrt{10}})^2}cosx=

1−(

5

1

)

2

and cosy=

1−(

10

1

)

2

( Because sin²A + cos²A = 1 ⇒ cos²A = 1 - sin²A ⇒ cos A = √(1-sin²A)

cos x = \sqrt{1-\frac{1}{5}}\text{ and }cos y = \sqrt{1-\frac{1}{10}}cosx=

1−

5

1

and cosy=

1−

10

1

cos x = \sqrt{\frac{4}{5}}\text{ and }cos y = \sqrt{\frac{9}{10}}cosx=

5

4

and cosy=

10

9

cos x =\frac{2}{ \sqrt{5}}\text{ and }cos y =\frac{3}{\sqrt{10}}cosx=

5

2

and cosy=

10

3

Now, we know that,

sin (x+y) = sin x × cos y + cos x × sin y

sin (x+y) = \frac{1}{\sqrt{5}}\times \frac{3}{\sqrt{10}} + \frac{2}{ \sqrt{5}}\times \frac{1}{\sqrt{10}}sin(x+y)=

5

1

×

10

3

+

5

2

×

10

1

sin (x+y) = \frac{3}{\sqrt{50}}+\frac{2}{ \sqrt{50}}sin(x+y)=

50

3

+

50

2

sin(x+y) = \frac{5}{\sqrt{50}}sin(x+y)=

50

5

sin(x+y) = \frac{5}{5\sqrt{2}}sin(x+y)=

5

2

5

sin(x+y) = \frac{1}{\sqrt{2}}sin(x+y)=

2

1

\implies (x+y) = sin^{-1}(\frac{1}{\sqrt{2}})=\frac{\pi}{4}⟹(x+y)=sin

−1

(

2

1

)=

4

π

Hence, proved...

Similar questions