If x and y are positive integers. If x4 + y4 + x2y2 = 481 and xy = 12,
then what is the value of x2 - xy + y2 ?
Answers
Answered by
1
Algebra
Given: x⁴ + y⁴ + x²y² = 481 and xy = 12
To find: x² - xy + y² = ?
Solution:
Here, x⁴ + y⁴ + x²y² = 481
or, (x² + y²)² - 2 x²y² + x²y² = 481
or, (x² + y²)² - x²y² = 481
or, (x² + y² + xy) (x² + y² - xy) = 481 .....(1)
Now, x² + y² + xy
= √{(x² + y²)²} + xy
= √(x⁴ + y⁴ + 2x²y²) + xy
= √(x⁴ + y⁴ + x²y² + x²y²) + xy
= √(481 + 12²) + 12, using given values
= √(481 + 144) + 12
= √(625) + 12
= 25 + 12
= 37
From (1), we get
37 (x² + y² - xy) = 481
or, x² + y² - xy = 481 / 37
or, x² + y² - xy = 13
Answer:
x² + y² - xy = 13
Similar questions