Math, asked by petrokidzy, 9 months ago

if X and y are rational numbers , √3+√2/√3-√2 =x+y√6 find the values of X and y​

Answers

Answered by Anonymous
2

Answer:

\sf{The \ values \ of \ x \ and \ y \ are \ 5 \ and}

\sf{2 \ respectively.}

Given:

\sf{\leadsto{\dfrac{\sqrt3+\sqrt2}{\sqrt3-\sqrt2}=x+y\sqrt6}}

To find:

\sf{The \ values \ of \ x \ and \ y \ if \ they \ are}

\sf{rational \ numbers.}

Solution:

\sf{\leadsto{x+y\sqrt6=\dfrac{\sqrt3+\sqrt2}{\sqrt3-\sqrt2}}}

\sf{Rationalising \ the \ denominator}

\sf{\leadsto{x+y\sqrt6=\dfrac{(\sqrt3+\sqrt2)^{2}}{(\sqrt3-\sqrt2)(\sqrt3+\sqrt2)}}}

\sf{\leadsto{x+y\sqrt6=\dfrac{3+2+2\sqrt6}{\sqrt3^{2}-\sqrt2^{2}}}}

\sf{\leadsto{x+y\sqrt6=\dfrac{5+2\sqrt6}{3-2}}}

\sf{\leadsto{x+y\sqrt6=5+2\sqrt6}}

\sf{On \ comparing \ we \ get}

\boxed{\sf{x=5}}

\sf{y\sqrt6=2\sqrt6}

\boxed{\sf{\therefore{y=2}}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are \ 5 \ and}}}

\sf\purple{\tt{2 \ respectively.}}

Similar questions