Math, asked by sahilnirwan7355, 11 months ago

If x and y are the zeroes of the polynomial t2 – t + 4 find the value of (1/x) +(1/y) –xy.

Answers

Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{(\frac{1}{x})+(\frac{1}{y})-xy=\frac{-15}{4}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{given: }} \\  \tt{: \implies  {t}^{2}  - t + 4 = 0} \\  \\  \tt{: \implies x \: and \: y \: are \: zeroes \: of \: this \: quadratic} \\  \\   \red {\underline\bold{to \: find: }} \\  \tt{: \implies  \frac{1}{x} +  \frac{1}{y} - xy  = ?}

• According to given question :

  \tt{:\implies  {t}^{2}   - t + 4 = 0}\\  \\  \bold{solving \: this \: quadratic \: by \:qudratic \: formula} \\  \tt{: \implies  t =  \frac{  - b \pm \sqrt{ {b}^{2}  - 4ac}   }{2} } \\  \\  \tt{:  \implies t =  \frac{ - ( - 1) \pm \sqrt{ {( - 1)  }^{2}  - 4 \times 1 \times 4} }{2 \times 1} } \\  \\  \tt{:  \implies t =  \frac{1 \pm \sqrt{1 - 16} }{2}}  \\  \\  \tt{: \implies t =  \frac{1 \pm \sqrt{ - 15} }{2}} \\  \\  \tt{:   \implies t =  \frac{1 \pm15 \iota}{2}  } \\   \\  \green{ \tt{\therefore x =  \frac{1 + 15 \iota}{2}}}  \\  \\ \green{ \tt{\therefore y =  \frac{1  -  15 \iota}{2}}} \\  \\  \bold{for \: finding \: value} \\  \tt{: \implies  \frac{1}{x} +  \frac{1}{y}   - xy } \\  \\   \text{putting \: given \: values}\\  \tt{: \implies   \frac{1}{ \frac{1 + 15 \iota}{2} }  +  \frac{1}{ \frac{1 - 15 \iota}{2} }  -  \frac{1 + 15 \iota}{2}  \times  \frac{1  - 15 \iota}{2} } \\  \\  \tt{:  \implies  \frac{2}{1 + 15 \iota}  +  \frac{2}{1 - 15 \iota}  -  \frac{ {1}^{2} -  {(15 \iota)}^{2}  }{4} } \\  \\  \tt{: \implies  \frac{2(1  - 15 \iota) + 2(1  + 15 \iota}{(1 + 15 \iota)(1 - 15 \iota)}   -  \frac{1 +15 }{4} } \\  \\   \tt{:  \implies  \frac{2 - 30 \iota + 2 + 30 \iota}{1 + 15}  -  4} \\  \\   \tt{: \implies  \frac{2 + 2}{16}   - 4} \\  \\  \tt{:  \implies  \frac{1}{4}  - 4} \\  \\   \green{\tt{:  \implies  \frac{ - 15}{4} }}

Answered by Mankuthemonkey01
13

Answer

-15/4

\rule{200}2

Explanation

Given, x and y are the zeroes of polynomial t² - t + 4.

To find, the value of (1/x) + (1/y) - xy

Comparing the given quadratic equation with standard equation ax² + bx + c, we get

a = 1

b = -1

c = 4

We know that, for a quadratic equation, sum of zeroes = -b/a

⇒ x + y = - (-1/1)

x + y = 1.........(1)

And, product of zeroes = c/a

⇒ xy = 4/1

xy = 4.................(2)

Now,

(1/x) + (1/y) - xy

Taking LCM,

⇒ (x + y)/xy - xy

From (1) and (2), the expression becomes

⇒ 1/4 - 4

⇒ 1/4 - 16/4

-15/4

Similar questions