Math, asked by Shivami0202, 9 months ago

If X and Y are two sets such that X has 40 elements, X ∪Y has 60 elements and X ∩Y has 10 elements, how many elements does Y have?​

Answers

Answered by ITZINNOVATIVEGIRL588
4

\huge\underline\mathfrak\pink{♡Answer♡}

We know that

n(X) = 40

n(X ∪ Y) = 60

n(X ∩ Y) = 10

It can be written as

n(X ∪ Y) = n(X) + n(Y) – n(X ∩ Y)

By substituting the values

60 = 40 + n(Y) – 10

On further calculation

n(Y) = 60 – (40 – 10) = 30

Therefore,

the set Y has 30 elements.

Answered by Rudranil420
3

Answer:

➡We know that

n(X) = 40

n(X ∪ Y) = 60

n(X ∩ Y) = 10

It can be written as

n(X ∪ Y) = n(X) + n(Y) – n(X ∩ Y)

➡By substituting the values

60 = 40 + n(Y) – 10

➡On further calculation

n(Y) = 60 – (40 – 10) = 30

Therefore,

✔The set Y has 30 elements.

Step-by-step explanation:

HOPE IT HELP YOU ✌✌

Similar questions