Math, asked by tarachand27, 1 year ago

if x and y be two positive real number such that 9x^2+ y^2=96 and xy = 8 then find the value of 3x+y​

Answers

Answered by welcome101
0

Answer:

9x {}^{2}  + y {}^{2}  = 96 \: and \: xy = 8 \: given \\ so \: ( 3x + y) {}^{2}  = (9x {}^{2}  + y {}^{2})  + 6xy \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:   \:  = 96  \:  +  \: 6 \:  \times  \: 8 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \:144 \\ thus \: (3x  \:  +  \: y) {}^{2}  =  \: 144 \\ hence \:  \: 3x \:  +  \: y \:  =  \:  \sqrt{144  }  \\ ie \:  \:  \:  \:  \:  \:  \:  \:  \: 3x \:  +  \: y \:  =  \: 12

Similar questions