Math, asked by ayushkumar9533, 1 year ago

if x andy be two positive real numbers such that 8x^3+27y^3=270 and 2x^y+3xy^2=15, then evaluate 2x+3y

Answers

Answered by karnikkumar
6

8x  ^3 + 27y ^3 \\ 2x {}  {}^{2}   + 3xy { }^{2}  \\  = (2x + 3y) { }^{2}  = (2x) ^3 + (3y) ^3 + 3(2x)(3y)(2x + 3y) \\  = \\  = 8x   ^3 + 27y ^3 + 18xy(2x + 3y) \\  =( 2 x + 3y) ^3 = 8x ^3 + 27y ^3   + 18(2x ^2 + 3xy ^2) \\  = (2x + 3y ) ^3 = 730 + 18(15) \\  = 730 + 270 =( 2x + 3y)  ^3  = 1000 \\  =( 2x  + 3y)   ^3  = 1000 \\  = 2x + 3y =   \sqrt[3]{1000 }   \\  = 2x + 3y  = 10 \\  \\  \\ thus \: required \: value \: of \: the \: expression \: is \: 10
Similar questions