if x=asinθ and y=acosθ then find x^2+y^2
Answers
Answered by
3
Hey folk !!
Here's the answer you are looking for
x = asinθ
y = acosθ
So, x² + y² = (asinθ)² + (acosθ)²
= a²sin²θ + a²cos²θ
= a² (sin²θ + cos²θ)
= a² (1) [because sin²θ + cos²θ = 1]
= a²
Therefore, x² + y² = a²
★★ HOPE THAT HELPS ☺️ ★★
Here's the answer you are looking for
x = asinθ
y = acosθ
So, x² + y² = (asinθ)² + (acosθ)²
= a²sin²θ + a²cos²θ
= a² (sin²θ + cos²θ)
= a² (1) [because sin²θ + cos²θ = 1]
= a²
Therefore, x² + y² = a²
★★ HOPE THAT HELPS ☺️ ★★
Answered by
5
HI !
x = asinθ
y = acosθ
x² + y² = (asinθ )² + (a cosθ )²
= a²sin²θ + a²cos²θ
= a²(sin²θ +cos²θ )
= a²
{sin²θ +cos²θ = 1}
hence,
x² + y² = a²
x = asinθ
y = acosθ
x² + y² = (asinθ )² + (a cosθ )²
= a²sin²θ + a²cos²θ
= a²(sin²θ +cos²θ )
= a²
{sin²θ +cos²θ = 1}
hence,
x² + y² = a²
Similar questions