If x = asinθ + bcosθ and y = acosθ - bsinθ , prove that x2 + y2 = a2 + b2
Answers
GIVEN :-
TO PROVE :-
SOLUTION :-
Putting values of x and y ,
Taking a² common and b² common respectively,
★ sin²ø + cos²ø = 1
Hence ,
MORE IDENTITIES :-
♦ 1 + tan²ø = sec²ø
♦ 1 + cot²ø = cosec²ø
♦ sin2ø = 2sinø.cosø
♦ cos2ø = cos²ø - cos²ø
ㅤㅤㅤㅤ= 2cos²ø - 1
ㅤㅤㅤㅤ= 1 - 2sin²ø
Answer:
GIVEN :-
\begin{gathered} \\ \bullet \sf \:x = asin \theta + bcos\theta \\ \\ \bullet \sf \: y = acos\theta - sin\theta \\ \\ \end{gathered}
∙x=asinθ+bcosθ
∙y=acosθ−sinθ
TO PROVE :-
\begin{gathered} \\ \bullet \sf \: {x}^{2} + {y}^{2} = {a}^{2} + {b}^{2} \\ \\ \end{gathered}
∙x
2
+y
2
=a
2
+b
2
SOLUTION :-
\begin{gathered} \\ \sf \: L.H.S = {x}^{2} + {y}^{2} \\ \end{gathered}
L.H.S=x
2
+y
2
Putting values of x and y ,
\begin{gathered} \\ \implies \sf \: (asin\theta + bco {s\theta)}^{2} + (acos\theta - bsi {n\theta)}^{2} \\ \\ \\ \implies \sf \: {a}^{2} {sin}^{2}\theta + {b}^{2} {cos}^{2}\theta + 2(asin\theta)(bcos\theta) + \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: {a}^{2} {cos}^{2}\theta + {b}^{2} {sin}^{2}\theta - 2(acos\theta)(bsin\theta) \\ \end{gathered}
⟹(asinθ+bcosθ)
2
+(acosθ−bsinθ)
2
⟹a
2
sin
2
θ+b
2
cos
2
θ+2(asinθ)(bcosθ)+
a
2
cos
2
θ+b
2
sin
2
θ−2(acosθ)(bsinθ)
\begin{gathered} \\ \implies \sf \: {a}^{2} {sin}^{2}\theta + {a}^{2} {cos}^{2}\theta + {b}^{2} {cos}^{2}\theta + {b}^{2} {sin}^{2}\theta + \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \cancel{2absin\theta.cos\theta} - \cancel{2absin\theta .cos\theta}\\ \end{gathered}
⟹a
2
sin
2
θ+a
2
cos
2
θ+b
2
cos
2
θ+b
2
sin
2
θ+
2absinθ.cosθ
−
2absinθ.cosθ
Taking a² common and b² common respectively,
\begin{gathered} \\ \implies \sf \: {a}^{2} ( {sin}^{2}\theta + {cos}^{2}\theta ) + {b}^{2} ( {cos}^{2}\theta + {sin}^{2}\theta ) \: \\ \\ \end{gathered}
⟹a
2
(sin
2
θ+cos
2
θ)+b
2
(cos
2
θ+sin
2
θ)
★ sin²ø + cos²ø = 1
\begin{gathered} \\ \sf \implies \: {a}^{2} (1) + {b}^{2} (1) \\ \\ \implies \sf \: {a}^{2} + {b}^{2} \: \: \: \: \: = R.H.S \\ \\ \end{gathered}
⟹a
2
(1)+b
2
(1)
⟹a
2
+b
2
=R.H.S
Hence ,
\begin{gathered} \\ \underline{\overline{\boxed{ \sf {x}^{2} + {y}^{2} = {a}^{2} + {b}^{2} }}} \\ \\ \\ \end{gathered}
x
2
+y
2
=a
2
+b
2
MORE IDENTITIES :-
♦ 1 + tan²ø = sec²ø
♦ 1 + cot²ø = cosec²ø
♦ sin2ø = 2sinø.cosø
♦ cos2ø = cos²ø - cos²ø
ㅤㅤㅤㅤ= 2cos²ø - 1
ㅤㅤㅤㅤ= 1 - 2sin²ø
Step-by-step explanation:
Hope it helps
Good night