Math, asked by vijjvals, 4 months ago

If x = asinθ + bcosθ and y = acosθ - bsinθ , prove that x2 + y2 = a2 + b2

Answers

Answered by Anonymous
5

GIVEN :-

 \\  \bullet \sf \:x = asin \theta + bcos\theta \\  \\  \bullet \sf \: y = acos\theta - sin\theta \\  \\

TO PROVE :-

 \\  \bullet \sf \:  {x}^{2}  +  {y}^{2} =  {a}^{2}   +  {b}^{2}  \\  \\

SOLUTION :-

  \\ \sf \: L.H.S =  {x}^{2}  +  {y}^{2}  \\

Putting values of x and y ,

 \\  \implies  \sf \: (asin\theta + bco {s\theta)}^{2}  + (acos\theta  -  bsi {n\theta)}^{2}  \\ \\ \\  \implies \sf \:  {a}^{2}  {sin}^{2}\theta  +  {b}^{2}  {cos}^{2}\theta  + 2(asin\theta)(bcos\theta)  + \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    {a}^{2}  {cos}^{2}\theta  +  {b}^{2}  {sin}^{2}\theta   -  2(acos\theta)(bsin\theta) \\

  \\  \implies \sf \:  {a}^{2}  {sin}^{2}\theta  +  {a}^{2}  {cos}^{2}\theta  +  {b}^{2}  {cos}^{2}\theta  +  {b}^{2}  {sin}^{2}\theta +   \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \cancel{2absin\theta.cos\theta}  -  \cancel{2absin\theta .cos\theta}\\

Taking a² common and b² common respectively,

 \\  \implies \sf \:  {a}^{2} ( {sin}^{2}\theta  +  {cos}^{2}\theta ) +  {b}^{2} ( {cos}^{2}\theta  +  {sin}^{2}\theta ) \:  \\ \\

sin²ø + cos²ø = 1

 \\  \sf   \implies \:  {a}^{2} (1) +  {b}^{2} (1) \\  \\  \implies \sf \:  {a}^{2}  +  {b}^{2}  \:  \:  \:  \:  \:  = R.H.S \\  \\

Hence ,

 \\      \underline{\overline{\boxed{ \sf  {x}^{2}  +  {y}^{2}  =    {a}^{2}  +  {b}^{2} }}} \\  \\  \\

MORE IDENTITIES :-

♦ 1 + tan²ø = sec²ø

♦ 1 + cot²ø = cosec²ø

♦ sin2ø = 2sinø.cosø

♦ cos2ø = cos²ø - cos²ø

ㅤㅤㅤㅤ= 2cos²ø - 1

ㅤㅤㅤㅤ= 1 - 2sin²ø

Answered by SudarshanaGanguly
0

Answer:

GIVEN :-

\begin{gathered} \\ \bullet \sf \:x = asin \theta + bcos\theta \\ \\ \bullet \sf \: y = acos\theta - sin\theta \\ \\ \end{gathered}

∙x=asinθ+bcosθ

∙y=acosθ−sinθ

TO PROVE :-

\begin{gathered} \\ \bullet \sf \: {x}^{2} + {y}^{2} = {a}^{2} + {b}^{2} \\ \\ \end{gathered}

∙x

2

+y

2

=a

2

+b

2

SOLUTION :-

\begin{gathered} \\ \sf \: L.H.S = {x}^{2} + {y}^{2} \\ \end{gathered}

L.H.S=x

2

+y

2

Putting values of x and y ,

\begin{gathered} \\ \implies \sf \: (asin\theta + bco {s\theta)}^{2} + (acos\theta - bsi {n\theta)}^{2} \\ \\ \\ \implies \sf \: {a}^{2} {sin}^{2}\theta + {b}^{2} {cos}^{2}\theta + 2(asin\theta)(bcos\theta) + \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: {a}^{2} {cos}^{2}\theta + {b}^{2} {sin}^{2}\theta - 2(acos\theta)(bsin\theta) \\ \end{gathered}

⟹(asinθ+bcosθ)

2

+(acosθ−bsinθ)

2

⟹a

2

sin

2

θ+b

2

cos

2

θ+2(asinθ)(bcosθ)+

a

2

cos

2

θ+b

2

sin

2

θ−2(acosθ)(bsinθ)

\begin{gathered} \\ \implies \sf \: {a}^{2} {sin}^{2}\theta + {a}^{2} {cos}^{2}\theta + {b}^{2} {cos}^{2}\theta + {b}^{2} {sin}^{2}\theta + \\ \sf \: \: \: \: \: \: \: \: \: \: \: \: \cancel{2absin\theta.cos\theta} - \cancel{2absin\theta .cos\theta}\\ \end{gathered}

⟹a

2

sin

2

θ+a

2

cos

2

θ+b

2

cos

2

θ+b

2

sin

2

θ+

2absinθ.cosθ

2absinθ.cosθ

Taking a² common and b² common respectively,

\begin{gathered} \\ \implies \sf \: {a}^{2} ( {sin}^{2}\theta + {cos}^{2}\theta ) + {b}^{2} ( {cos}^{2}\theta + {sin}^{2}\theta ) \: \\ \\ \end{gathered}

⟹a

2

(sin

2

θ+cos

2

θ)+b

2

(cos

2

θ+sin

2

θ)

★ sin²ø + cos²ø = 1

\begin{gathered} \\ \sf \implies \: {a}^{2} (1) + {b}^{2} (1) \\ \\ \implies \sf \: {a}^{2} + {b}^{2} \: \: \: \: \: = R.H.S \\ \\ \end{gathered}

⟹a

2

(1)+b

2

(1)

⟹a

2

+b

2

=R.H.S

Hence ,

\begin{gathered} \\ \underline{\overline{\boxed{ \sf {x}^{2} + {y}^{2} = {a}^{2} + {b}^{2} }}} \\ \\ \\ \end{gathered}

x

2

+y

2

=a

2

+b

2

MORE IDENTITIES :-

♦ 1 + tan²ø = sec²ø

♦ 1 + cot²ø = cosec²ø

♦ sin2ø = 2sinø.cosø

♦ cos2ø = cos²ø - cos²ø

ㅤㅤㅤㅤ= 2cos²ø - 1

ㅤㅤㅤㅤ= 1 - 2sin²ø

Step-by-step explanation:

Hope it helps

Good night

Similar questions