if X=aSin∅+bCos∅ and y=aCos∅-bSin∅ then prove that x²+y²=a²+b²
Answers
Answer:-
Step-by-step explanation:Given :-
→ a cos∅ + b sin∅ = x .
→ a sin∅ - b cos∅ = y .
Now,
We have,
x² + y² .
= ( a cos ∅ + b sin ∅ )² + ( a sin∅ - b cos∅ )² .
= a²cos²∅ + b²cos²∅ + 2 ab cos∅ sin∅ + a²sin²∅ + b²sin²∅ - 2 ab sin∅ cos∅ .
= a²cos²∅ + b²cos²∅ + a²sin²∅ + b²sin²∅ .
= a²cos²∅ + a²sin²∅ + b²cos²∅ + b²cos²∅ .
= a²( cos²∅ + sin²∅ ) + b²( cos²∅ + sin²∅ ) .
= a² + b² .
LHS = RHS .
Hence, it is proved .
Answer:
Given: x = a sin theta + b cos theta
y = a cos theta - b sin theta
To prove: x² +y² = a² + b²
Solution:
x = a sin theta + b cos theta..............(Given)
y = a cos theta - b sin theta ...............(Given)
L.H.S = x² + y²
= (a sin theta + b cos theta)² + ( a cos theta - b sin theta)²
= a² sin²theta + 2asin theta b cos theta + b² cos²theta
+ a² cos²theta - 2a cos theta b sin theta + b²sin²theta
..................[ since, ( a+b)² = a² +2ab +b²
(a-b)² = a² -2ab + b²]
= a² ( sin ² theta + cos ²theta) + b² ( cos ² theta + sin ² theta)
= a² (1) + b²(1) .........[ since, sin²theta + cos²theta =1]
= a²+b²
= R.H.S
Hence,
L.H.S = R.H.S
THEREFORE,
x²+y² = a² + b²